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Chapter 4

Operations
on

Data
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After reading this chapter, the reader should After reading this chapter, the reader should 
be able to:be able to:

OOBJECTIVESBJECTIVES

List the three categories of operations performed on data.
Perform unary and binary logic operations on bit 
patterns.
Distinguish between logic shift operations and arithmetic 
shift operations.
Perform addition and subtraction on integers when they 
are stored in two’s complement format.
Perform addition and subtraction on integers when 
stored in sign-and-magnitude format.
Perform addition and subtraction operations on reals
stored in floating-point format.
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Operations on Data

Three Categories:
Logic Operations
Shift Operations
Arithmetic Operations
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LOGICAL
OPERATIONS

LOGICALLOGICAL
OPERATIONSOPERATIONS

4.4.11
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Logic Operations

Boolean algebra belongs to a special 
field of mathematics called logic.

A bit can take one of the two values: 0 
or 1.
A truth table defines the values of the 
output for each possible input or inputs.

The output of each operator is always one 
bit.

Operation: A + B
Operator : +
Operands : A, B
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Truth Tables
• 1 - True
• 0 - False
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Unary and Binary Operations
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Logical Operations
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X

Logic Operations at Bit Level NOT Operator
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AND Operator
x

y

For x = 0 or 1    x AND 0 → 0            0 AND x → 0
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OR Operator

x
y

For x = 0 or 1        x OR 1 → 1              1 OR x → 1
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XOR Operator

The result is 0 iff both bits are equal; 
otherwise, it is 1.

x
y

For x = 0 or 1                           
1 XOR x → NOT x x XOR 1 → NOT x



13

The Application of XOR Operator

0  if x = y 
x XOR y = 

1  if x ≠ y

x
y

x
y x EQ y

EQuality
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Example 4.2

The XOR operator is not actually a new operator. We can always The XOR operator is not actually a new operator. We can always 
simulate it using the other three operators. The following two simulate it using the other three operators. The following two 
expressions are equivalentexpressions are equivalent

x XOR y ↔ [x AND (NOT y)]   OR  [(NOT x) AND y]

The equivalence can be proved if we make the truth table for botThe equivalence can be proved if we make the truth table for both.h.
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Logic Operations at Pattern Level

The same four operators (NOT, AND, OR, and XOR) can be 
applied to an n-bit pattern. Figure 4.2 shows these four 
operators with input and output patterns.

Figure 4.2 Logic operators applied to bit patterns
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Example 4.3

Use the NOT operator on the bit pattern 10011000.Use the NOT operator on the bit pattern 10011000.

SolutionSolution
The solution is shown below. Note that the NOT operator The solution is shown below. Note that the NOT operator 
changes every 0 to 1 and every 1 to 0.changes every 0 to 1 and every 1 to 0.
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Example 4.4

Use the AND operator on the bit patterns 10011000 and Use the AND operator on the bit patterns 10011000 and 
00101010.00101010.

SolutionSolution
Note that only one bit in the output is 1, where both Note that only one bit in the output is 1, where both 
corresponding inputs are 1s.corresponding inputs are 1s.
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Example 4.5

Use the OR operator on the bit patterns 10011001 and 00101110.Use the OR operator on the bit patterns 10011001 and 00101110.

SolutionSolution
Note that only one bit in the output is 0, where both Note that only one bit in the output is 0, where both 
corresponding inputs are 0s.corresponding inputs are 0s.
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Example 4.6

Use the XOR operator on the bit patterns 10011001 and Use the XOR operator on the bit patterns 10011001 and 
00101110.00101110.

SolutionSolution
Compare the output in this example with the one in Example 4.5. Compare the output in this example with the one in Example 4.5. 
The only difference is that when the two inputs are 1s, the resuThe only difference is that when the two inputs are 1s, the result lt 
is 0 (the effect of exclusion).is 0 (the effect of exclusion).
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The four logic operations can be used 
to modify a bit pattern.

Complementing (NOT)
Unsetting (AND)
Setting (OR)
Flipping (XOR)

Applications
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Mask

• The Target can be modified 
(unset/set/reverse specific bits)

by the Binary Operator (AND/OR/XOR)
with a Mask.
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Example of Unsetting Specific Bits
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Example 4.7Example 4.7
Use a mask to unset (clear) the 5 leftmost bits of a pattern. 
Test the mask with the pattern 10100110.

SolutionSolution

The mask is The mask is 0000000000111111..

Target  Target  1 0 1 0 01 0 1 0 0 1 1 01 1 0 ANDAND
Mask                  Mask                  0 0 0 0 0 1 1 10 0 0 0 0 1 1 1

----------------------------------------------
Result                 Result                 0 0 0 0 00 0 0 0 0 1 1 01 1 0
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Example of Setting Specific Bits
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Example 4.8Example 4.8
Use a mask to set the 5 leftmost bits of a pattern. Test the 
mask with the pattern 10100110.

SolutionSolution

The mask is The mask is 1111111111000.000.

Target  Target  1 0 1 0 01 0 1 0 0 1 1 0 1 1 0 OROR
Mask                  Mask                  1 1 1 1 11 1 1 1 1 0 0 00 0 0

----------------------------------------------
Result  Result  1 1 1 1 1 1 1 01 1 1 1 1 1 1 0
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Example of Flipping Specific Bits
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Example 4.9Example 4.9
Use a mask to flip the 5 leftmost bits of a pattern. Test the 
mask with the pattern 10100110.

SolutionSolution

Target  Target  1 0 1 0 01 0 1 0 0 1 1 01 1 0 XORXOR
MaskMask 1 1 1 1 11 1 1 1 1 0 0 00 0 0

----------------------------------------------
Result                 Result                 0 1 0 1 10 1 0 1 1 1 1 01 1 0
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SHIFT
OPERATIONS

SHIFTSHIFT
OPERATIONSOPERATIONS

4.4.22



29

Overview

Shift operationsShift operations move the bits in a move the bits in a 
pattern, changing the positions of pattern, changing the positions of 
the bits.the bits.

They can move bits to the left or to the They can move bits to the left or to the 
right.right.

We can divide shift operations into We can divide shift operations into 
two categories: two categories: logical shift logical shift 
operationsoperations and and arithmetic shift arithmetic shift 
operationsoperations..



30

Logical Shift Operations (1)

A logical shift operation is applied to a pattern that does 
not represent a signed number.
We distinguish two types of logical shift operations, as 
described below:

Logical Shift

Logical Circular Shift (Rotate)
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Figure 4.3 Logical Shift Operations

Logical Shift Operations (2)
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Example 4.10

Use a logical left shift operation on the bit pattern 10011000.Use a logical left shift operation on the bit pattern 10011000.

SolutionSolution
The leftmost bit is lost and a 0 is inserted as the rightmost biThe leftmost bit is lost and a 0 is inserted as the rightmost bit.t.

Discarded

Added
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Figure 4.4 Circular Shift Operations

Circular Shift Operations
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Example 4.11

Use a circular left shift operation on the bit pattern 10011000.Use a circular left shift operation on the bit pattern 10011000.

SolutionSolution
The leftmost bit is circulated and becomes the rightmost bit.The leftmost bit is circulated and becomes the rightmost bit.
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Arithmetic Shift Operations

Arithmetic shift operations assume that the bit pattern 
is a signed integer in two’s complement format.
Arithmetic right shift is used to divide an integer by 
two, while arithmetic left shift is used to multiply an 
integer by two.

Figure 4.5 Arithmetic Shift Operations
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Example 4.12

Use an arithmetic right shift operation on the bit pattern Use an arithmetic right shift operation on the bit pattern 
10011001. The pattern is an integer in two10011001. The pattern is an integer in two’’s complement format.s complement format.

SolutionSolution
The leftmost bit is retained and also copied to its right neighbThe leftmost bit is retained and also copied to its right neighbor or 
bit. bit. 

The original number was The original number was −−103 and the new number is 103 and the new number is −−52, which 52, which 
is the result of dividing is the result of dividing −−103 by 2 truncated to the smaller integer.103 by 2 truncated to the smaller integer.
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Example 4.13

Use an arithmetic left shift operation on the bit pattern 110110Use an arithmetic left shift operation on the bit pattern 11011001. 01. 
The pattern is an integer in twoThe pattern is an integer in two’’s complement format.s complement format.

SolutionSolution
The leftmost bit is lost and a 0 is inserted as the rightmost biThe leftmost bit is lost and a 0 is inserted as the rightmost bit.t.

The original number was The original number was −−39 and the new number is 39 and the new number is −−78. The 78. The 
original number is multiplied by two. The operation is valid original number is multiplied by two. The operation is valid 
because no underflow occurred.because no underflow occurred.
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Example 4.14

Use an arithmetic left shift operation on the bit pattern 011111Use an arithmetic left shift operation on the bit pattern 01111111. 11. 
The pattern is an integer in twoThe pattern is an integer in two’’s complement format.s complement format.

SolutionSolution
The leftmost bit is lost and a 0 is inserted as the rightmost biThe leftmost bit is lost and a 0 is inserted as the rightmost bit.t.

The original number was 127 and the new number is The original number was 127 and the new number is −−2. Here the 2. Here the 
result is not valid because an overflow has occurred. The result is not valid because an overflow has occurred. The 
expected answer 127 expected answer 127 ×× 2 = 254 cannot be represented by an 82 = 254 cannot be represented by an 8--bit bit 
pattern.pattern.
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Example 4.15

Combining logic operations and logical shift operations give us Combining logic operations and logical shift operations give us 
some tools for manipulating bit patterns. Assume that we have a some tools for manipulating bit patterns. Assume that we have a 
pattern and we need to use the third bit (from the right) of thipattern and we need to use the third bit (from the right) of this s 
pattern in a decisionpattern in a decision--making process. We want to know if this making process. We want to know if this 
particular bit is 0 or 1. The following shows how we can find ouparticular bit is 0 or 1. The following shows how we can find out.t.

We can then test the result: if it is an unsigned integer 1, theWe can then test the result: if it is an unsigned integer 1, the
target bit was 1, whereas if the result is an unsigned integer 0target bit was 1, whereas if the result is an unsigned integer 0, the , the 
target bit was 0.target bit was 0.
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ARITHMETIC
OPERATIONS
ARITHMETICARITHMETIC
OPERATIONSOPERATIONS

4.4.33
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Arithmetic Operations on Integers

We focus only on addition and subtraction
because 

Multiplication is just repeated addition and 
Division is just repeated subtraction.
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Two’s Complement Integers

When the subtraction operation is encountered, the 
computer simply changes it to an addition operation, but 
makes two’s complement of the second number. In other 
words:

A − B ↔ A + (B + 1) 

Where B is the one’s complement of B and 
(B + 1) means the two’s complement of B
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We should remember that we add integers column by 
column. The following table shows the sum and carry (C).
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Figure 4.6 Addition and Subtraction of Integers in Two’s Complement Format
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Example 4.16
Two integers A and B are stored in twoTwo integers A and B are stored in two’’s complement format. s complement format. 
Show how B is added to A. Show how B is added to A. 

SolutionSolution
The operation is adding. A is added to B and the result is storeThe operation is adding. A is added to B and the result is stored d 
in R. (+17) + (+22) = (+39).in R. (+17) + (+22) = (+39).

A = (00010001)A = (00010001)22 B = (00010110)B = (00010110)22
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Example 4.17
Two integers A and B are stored in twoTwo integers A and B are stored in two’’s complement format. s complement format. 
Show how B is added to A.Show how B is added to A.

SolutionSolution
The operation is adding. A is added to B and the result is storeThe operation is adding. A is added to B and the result is stored d 
in R. (+24) + (in R. (+24) + (−−17) = (+7).17) = (+7).

A = (00011000)A = (00011000)22 B = (11101111)B = (11101111)22
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Example 4.18

Two integers A and B are stored in twoTwo integers A and B are stored in two’’s complement format. s complement format. 
Show how B is subtracted from A.Show how B is subtracted from A.

SolutionSolution
The operation is subtracting. A is added to (B + 1) and the resuThe operation is subtracting. A is added to (B + 1) and the result lt 
is stored in R. (+24) is stored in R. (+24) −− ((−−17) = (+41).17) = (+41).

A = (00011000)A = (00011000)22 B = (11101111)B = (11101111)22
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Example 4.19

Two integers A and B are stored in twoTwo integers A and B are stored in two’’s complement format. s complement format. 
Show how B is subtracted from A.Show how B is subtracted from A.

SolutionSolution
The operation is subtracting. A is added to (B + 1) and the resuThe operation is subtracting. A is added to (B + 1) and the result lt 
is stored in R. (is stored in R. (−−35) 35) −− (+20) = ((+20) = (−−55).55).

A = (11011101)A = (11011101)22 B = (00010100)B = (00010100)22
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Example 4.20

Two integers A and B are stored in twoTwo integers A and B are stored in two’’s complement format. s complement format. 
Show how B is added to A.Show how B is added to A.

SolutionSolution
The operation is adding. A is added to B and the result is storeThe operation is adding. A is added to B and the result is stored d 
in R.in R.

A = (01111111)A = (01111111)22 B = (00000011)B = (00000011)22

We expect the result to be 127 + 3 = 130, but the answer is We expect the result to be 127 + 3 = 130, but the answer is −−126. 126. 
The error is due to overflow, because the expected answer (+130)The error is due to overflow, because the expected answer (+130)
is not in the range is not in the range −−128 to +127.128 to +127.
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When we do arithmetic operations on numbers in a 
computer, we should remember that each number 

and the result should be in the range defined by
the bit allocation.

i
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Sign-and-Magnitude Integers

Addition and subtraction for integers in sign-and-
magnitude representation looks very complex.
We have four different combination of signs (two signs, 
each of two values) for addition and four different 
conditions for subtraction.
This means that we need to consider eight different 
situations. However, if we first check the signs, we can 
reduce these cases, as shown in Figure 4.7.



52Figure 4.7 Addition and Subtraction of Integers in Sign-and-
Magnitude Format
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Example 4.22

Two integers A and B are stored in signTwo integers A and B are stored in sign--andand--magnitude format. magnitude format. 
Show how B is added to A.Show how B is added to A.

SolutionSolution
The operation is adding: the sign of B is not changed. S = AThe operation is adding: the sign of B is not changed. S = ASS
XOR BXOR BSS = 1; R= 1; RMM = A= AMM + (B+ (BMM +1). Since there is no overflow, we +1). Since there is no overflow, we 
need to take the twoneed to take the two’’s complement of Rs complement of RMM. The sign of R is the . The sign of R is the 
sign of B. (+17) + ( sign of B. (+17) + ( −−22) = (22) = (−−5).5).

A = (0 0010001)A = (0 0010001)22 B = (1 0010110)B = (1 0010110)22
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Example 4.23
Two integers A and B are stored in signTwo integers A and B are stored in sign--andand--magnitude format. magnitude format. 
Show how B is subtracted from A.Show how B is subtracted from A.

SolutionSolution
The operation is subtracting: SThe operation is subtracting: SBB = S= SBB.  S = A.  S = ASS XOR BXOR BSS = 1, R= 1, RMM = = 
AAMM + (B+ (BMM +1). Since there is an overflow, the value of R+1). Since there is an overflow, the value of RMM is final. is final. 
The sign of R is the sign of A. (The sign of R is the sign of A. (−−81) 81) −− ((−−22) = (22) = (−−59).59).

A = (1 1010001)A = (1 1010001)22 B = (1 0010110)B = (1 0010110)22
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Arithmetic Operations on Reals

All arithmetic operations such as addition, subtraction, 
multiplication and division can be applied to reals stored 
in floating-point format.
Multiplication of two reals involves multiplication of 
two integers in sign-and-magnitude representation.
Division of two reals involves division of two integers 
in sign-and-magnitude representations. We only show 
addition and subtractions for reals.
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Addition and Subtraction of Reals

Addition and subtraction of real numbers stored in 
floating-point numbers is reduced to addition and 
subtraction of two integers stored in sign-and-
magnitude (combination of sign and mantissa) after the 
alignment of decimal points.
Figure 4.8 shows a simplified version of the procedure 
(there are some special cases that we have ignored).



57Figure 4.8 Addition and Subtraction of Reals in Floating-Point Format
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Example 4.24

Show how the computer finds the result of (+5.75) + (+161.875) Show how the computer finds the result of (+5.75) + (+161.875) 
= (+167.625).= (+167.625).

SolutionSolution
As we saw in Chapter 3, these two numbers are stored in floatingAs we saw in Chapter 3, these two numbers are stored in floating--
point format, as shown below, but we need to remember that each point format, as shown below, but we need to remember that each 
number has a hidden 1 (which is not stored, but assumed).number has a hidden 1 (which is not stored, but assumed).
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Example 4.24 (Continued)(Continued)

The first few steps in the UML diagram (Figure 4.8) are not The first few steps in the UML diagram (Figure 4.8) are not 
needed. We deneeded. We de--normalize the numbers by adding the hidden 1s to normalize the numbers by adding the hidden 1s to 
the mantissa and incrementing the exponent. Now both dethe mantissa and incrementing the exponent. Now both de--
normalized mantissas are 24 bits and include the hidden 1s. Theynormalized mantissas are 24 bits and include the hidden 1s. They
should be stored in a location that can hold all 24 bits. Each should be stored in a location that can hold all 24 bits. Each 
exponent is incremented.exponent is incremented.
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Example 4.24 (Continued)(Continued)
Now we do signNow we do sign--andand--magnitude addition, treating the sign and magnitude addition, treating the sign and 
the mantissa of each number as one integer stored in signthe mantissa of each number as one integer stored in sign--andand--
magnitude representation.magnitude representation.

There is no overflow in the mantissa, so we normalize.There is no overflow in the mantissa, so we normalize.

The mantissa is only 23 bits, no rounding is needed. E = The mantissa is only 23 bits, no rounding is needed. E = 
(10000110)(10000110)22 = 134 M = 0100111101. In other words, the result is = 134 M = 0100111101. In other words, the result is 
(1.0100111101)(1.0100111101)22 ×× 22134134−−127127 = (10100111.101)= (10100111.101)22 = = 167.625167.625..
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Example 4.25
Show how the computer finds the result of (+5.75) + Show how the computer finds the result of (+5.75) + 
((−−7.0234375) = 7.0234375) = −− 1.2734375.1.2734375.

SolutionSolution
These two numbers can be stored in floatingThese two numbers can be stored in floating--point format, as point format, as 
shown below:shown below:

DeDe--normalization results in:normalization results in:
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Example 4.25 (Continued)(Continued)

Alignment is not needed (both exponents are the same), so we Alignment is not needed (both exponents are the same), so we 
apply addition operation on the combinations of sign and apply addition operation on the combinations of sign and 
mantissa. The result is shown below, in which the sign of the mantissa. The result is shown below, in which the sign of the 
result is negative:result is negative:

Now we need to normalize. We decrement the exponent three Now we need to normalize. We decrement the exponent three 
times and shift the detimes and shift the de--normalized mantissa to the left three normalized mantissa to the left three 
positions:positions:
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Example 4.25 (Continued)(Continued)

The mantissa is now 24 bits, so we round it to 23 bits.The mantissa is now 24 bits, so we round it to 23 bits.

The result is R = The result is R = −− 22127127−−127127 ×× 1.0100011 = 1.0100011 = −− 1.27343751.2734375, as , as 
expected.expected.


