Chapter 5

Computer
Organization

OBJECTIVES

After studying this chapter, the student should
be able to:

>
>

>

List the three categories of operations performed on data.
Perform unary and binary logic operations on bit
patterns.

Distinguish between logic shift operations and arithmetic
shift operations.

Perform addition and subtraction on integers when they
are stored in two’s complement format.

Perform addition and subtraction on integers when
stored in sign-and-magnitude format.

Perform addition and subtraction operations on reals
stored In floating-point format.

Three subsystems in Computer

[0 The central processing unit (CPU), the main
memory and the input/output subsystem.

Memory

Central Processing Unit
(CPL)

E R

Input / output subsystem

Figure 5.1 Computer hardware (subsystems)

|
_
N
LL,
T
el

Outlines

Three parts in CPU
B An arithmetic logic unit (ALU),

B A control unit and a set of registers,
B Fast storage locations.

ALU

The central processing unit (CPU)
performs operations on data.

Registers

Ry
D’/
Figure 5.2 Central

PC processing unit (CPU)

Control Unit

Central Processing Unit (CPU)

Register

Registers are fast stand-alone storage
locations that hold data temporarily.

Multiple registers are needed to facilitate
the operation of the CPU. Some of these
registers are shown in Figure 5.2.

Types

B Data registers

B Instruction register
B Program counter

Control Unit

The control unit controls the
operation of each subsystem.

Controlling Is achieved through
signals sent from the control unit to
other subsystems.

Viain
VIEMOrY.

Main Memory

Main memory is the second major
subsystem in a computer (Figure 5.3).

Address—= 0000000000011 1001011001 10 0| =— Contents (values)
0000000001j0000001111001101

0000000010J1110101011101100

11711111111{00000010111111080

Memory
Figure 5.3 Main memory

10

Main Memory

A collection of storage locations, each with
a unique identifier, called an address.

Data is transferred to and from memory in
groups of bits called words.

B A word can be a group of 8 bits, 16 bits, 32 bits
or 64 bits (and growing).

If the word Is 8 bits, It Is referred to as a

byte. The term “byte” is so common In
computer science

B a 16-bit word is referred to as a 2-byte word, or
a 32-bit word is referred to as a 4-byte word.

11

Address space

To access a word In memory requires
an identifier.

B Programmers use a name to identify a
word (or a collection of words)

B At the hardware level, each word is
Identified by an address.

The total number of uniguely

Identifiable locations iIn memory Is

called the address space.

12

Table 5.1 Memory units

Unit Exact Number of Bytes Approximation
kilobyte 210(1024) bytes 10° bytes
megabyte |22°(1,048,576) bytes 10° bytes
gigabyte [239(1,073,741,824) bytes 107 bytes
terabyte 240 pytes 102 bytes

Memory addresses are defined using unsigned binary integers.

13

Example 5.1

A computer has 32 MB (megabytes) of memory. How many bits
are needed to address any single byte in memory?

Solution
The memory address space is 32 MB, or 22° (2° x 220). We need
log, 2%, or 25 bits, to address each byte.

Example 5.2

A computer has 128 MB of memory. Each word in this computer
IS eight bytes. How many bits are needed to address any single
word in memory?

Solution

The memory address space is 128 MB, which means 27,
However, each word is eight (23) bytes, which means that we
have 224 words. We need log, 224, or 24 bits, to address each
word.

FEN

Memory Types

Two main types: RAM and ROM.

Random access memory (RAM)
B Static RAM (SRAM)
B Dynamic RAM (DRAM)

Read-only memory (ROM)
B Programmable read-only memory (PROM).

B Erasable programmable read-only memory
(EPROM).

B Electrically erasable programmable read-only
memory (EEPROM).

15

Memory hierarchy

Computer users need a lot of memory,

B especially memory that is very fast and
Inexpensive. (very fast memory is not

cheap).
The solution Is hierarchical levels of
m e m O ry = More costly Fastest

Registers

/ Cache memory\
Main memory
Less cos tly Slowest

16

Figure 5.4 Memory hierarchy

Cache Memory

Cache memory

B Faster than main memory, but slower
than the CPU and its registers.

B Normally small in size and Being placed
between the CPU and main memory
(Figure 5.5).

CPU

Memory

ALU

=7

‘ Control Unit |

Figure 5.5
Cache memory

17
Cache

PU/OUTTPUT
SJB Y SIHTEIVI

1/0 subsystem

The collection of devices referred to

as the input/output (1/0) subsystem
In a computer.

Communicate with the outside world

and to store programs and data.

Two broad categories: non-storage

and storage devices.

19

1/0 subsystem

Non-storage devices

B Allow the CPU/memory to communicate with the
outside world, but they cannot store information.

B E.g Keyboard, monitor, and Printer

Storage devices

B Store large amounts of information to be
retrieved at a later time.

B Cheaper than main memory, and their contents
are nonvolatile (not erased when the power is
turned off).

B Auxiliary storage devices.
[J Two categorize: magnetic or optical.

20

Track

Sector

///ﬁ* \

Controller
_-&'

Intertrack
Read / write gap
heads Intersector
)) gap
a. Disk drive b. Tracks and Sectors
Figure 5.6 A magnetic disk
Tape reel Take-up reel
3 Track 1 Block Block
I 1 1
Tape Tape :
/1 Track 9
Read / wrnte head
a. Tape drive b. Surface orgnization

Figure 5.7 A magnetic tape =

Land Land Land

a. Master disc ,
Plastic or glass

Land Land

b. Mold
Molding material
Protective layer
X Reflective layer

c. CD-ROM

Polycarbonate

resin
Laser source > Laser Detector

Figure 5.8 Creation and use of CD-ROMs

22

Table 5.2 CD-ROM speeds

Speed |Data rate Approximation
1x [153,600 bytes per second 150 KB/s
2x 307,200 bytes per second 300 KB/s
4x 614,400 bytes per second 600 KB/s
6x [921,600 bytes per second 900 KB/s
8x 1,228,800 bytes per second 1.2 MB/s
12x (1,843,200 bytes per second 1.8 MB/s
16x [2,457,600 bytes per second 2.4 MB/s
24x |3,688,400 bytes per second 3.6 MB/s
32x |4,915,200 bytes per second 4.8 MB/s
40x |6,144,000 bytes per second 6 MB/s

23

Byte (8 bit)

Symbol (14 bit)

cee Frame (42 symbols)

Sector (98 frames)

Figure 5.9 CD-ROM format

Protective layer

Reflective layer

Simulated pit

Polycarbonate
resin

Laser detector k¢

Laser source

Figure 5.10 Making a CD-R

24

I, o

Protective Layer

Reflective Layer
m_i: Alloy

‘ Amorphous (pit)

Polycarbonate
Crystalli land)
rystalline (land) i
Laser detector < Laser source

Figure 5.11 Making a CD-RW

25

Table 5.3 DVD capacities

Feature Capacity
Single-sided, single-layer 4.7 GB
Single-sided, dual-layer 8.5 GB
Double-sided, single-layer | 9.4 GB
Double-sided, dual-layer 17 GB

26

Description

] The interconnection plays an
Important role because information
needs to be exchanged between the
three subsystems.

B Connecting CPU and memory
B Connecting 1/0 devices
B Addressing input/output devices

28

Connecting CPU and memory

By three groups of connections, each
called a bus: data bus, address bus
and control bus.

CPU Memory

Address bus

Control bus

Figure 5.12 Connecting CPU and memory using three buses

29

Connecting 1/0 devices

/0 devices cannot be connected directly to
the buses that connect the CPU and memory.

/0 devices are electromechanical, magnetic,
or optical devices, whereas the CPU and
memory are electronic devices.

B Much slower speed than the CPU/memory.

B A need for some sort of intermediary to handle this
difference

Input/output devices are therefore attached

to the buses through input/output controllers
or interfaces.

30

CPU Memory

[E
=

Keyboard Monitor
controller controller

Printer
controller

controller

/A

3

e G seomanan

P I,/’

Figure 5.13 Connecting 1/O devices to the buses

31

CPU

Memory

SCSI
Controller

|] Terminator

ID=4

e I I

Terminator
Disk CD-ROM Scanner Tape

Figure 5.14 SCSI controller

32

CPU Memory

FireWire _
Scanner Controller Printer

Camera

Figure 5.15 FireWire controller

33

CPU

[E

USB Cable —\ %

USB Controller

(Root hub)

o

Device

J.

| | Device

-

Memory)

Dev1ce !

Device

Device

Device

Figure 5.16 USB controller

34

Addressing input/output
devices

The CPU usually uses the same bus to
read data from or write data to main
memory and 1/0 device.

The only difference is the instruction.

B If the instruction refers to a word in main
memory, data transfer is between main
memory and the CPU.

B If the instruction identifies an 1/0 device,

data transfer i1s between the 1/0 device
. and thecpPy. .~~~

35

Addressing input/output
devices

Two methods for handling the
addressing of 1/0 devices
B Isolated 1/0

B memory-mapped 1/0.

36

CPU

[E

Memory

System bus
: Read 101
Input 101
101 |] |] 103
102]] |] 104

Figure 5.17 Isolated 1/O addressing

Controller

101

37

CPU

System bus

[E

Memo

Read 101
Read 64001
64001 |] | | 64002
64003 |] |] 64004

Controller

101

64000

Figure 5.18 Memory-mapped 1/0 addressing

38

PROGIRAIVI

EXECUTTON

39

Description

Today, general-purpose computers
use a set of instructions called a
program to process data.

A computer executes the program to
create output data from input data.
Both the program and the data are
stored in memory.

40

Machine cycle

The CPU uses repeating machine
cycles to execute instructions in the
program, one by one, from beginning
to end.

A simplified cycle can consist of three
phases: fetch, decode and execute
(Figure 5.19).

41

Start

[No more instructions]

Stop

Figure 5.19 The steps of a cycle

42

INnput/output operation

Commands are required to transfer data

from 1/0 devices to the CPU and memory.

The operation of the CPU must be somehow

synchronized with the 1/0 devices.

Three methods have been devised for this

synchronization:

B programmed 1/0,

B Interrupt driven 1/0

B Direct memory access (DMA).

43

An mput/output
mstruction
encountered

[more words?]

Issue 1/O
command

Check

device status

Transter
a word

Continue with
the next instruction
in the program

Figure 5.20 Programmed 1/0

Start ===

An input/output Dl

Issue I/O
command

Transfer
a word

[more words?]

mstruction
encountered
Continue with AN
---4 the next instruction
in the program
Stop

Do something
else, but monitor
the interrupt

& Interrupt

Figure 5.21 Interrupt-driven 1/O

45

CPU Memory

System bus

Message (1) > .

Control Unil Block data transfer (5) .

[E

<

Bus request (2)

Y
| |
Address Data (3)
DMA]| | I —
Control Disk controller
| | >
Count Bufter ACK (4)

-

Disk

Figure 5.22 DMA connection to the general bus 46

An mnput/output
Start _———— mstruction
I encountered

(" Issue /O Do something
command J ~°°°° else, but monitor
the interrupt
54_ Interrupt (DMA ready for data transfer)

é . Release access
Wait ~ f------ to buses and wait

for DMA to finish

& Interrupt (DMA has finished data transfer)

Continue with
Stop -- the next mstruction
in the program

Figure 5.23 DMA input/output

48

Description

1 The architecture and organization of
computers has gone through many
changes In recent decades.

B CISC

B RISC

B Pipelining

B Parallel processing

49

CISC

CISC (pronounced sisk) stands for complex
Instruction set computer (CISC).

The strategy behind CISC architectures Is
to have a large set of instructions, including
complex ones.

Programming CISC-based computers is
easler than in other designs because there
IS a single instruction for both simple and
complex tasks.

Programmers, therefore, do not have to
write a set of instructions to do a complex
task.

50

RISC

RISC (pronounced risk) stands for reduced
Instruction set computer.

The strategy behind RISC architecture is to
have a small set of instructions that do a
minimum number of simple operations.

Complex instructions are simulated using a
subset of simple instructions.

Programming in RISC is more difficult and
time-consuming than in the other design,
because most of the complex instructions
are simulated using simple instructions.

51

Pipelining

A computer uses three phases, fetch,
decode and execute, for each instruction.

In early computers, these three phases
needed to be done In series for each

Instruction.

A technique called pipelining to improve

the throughput

B The control unit can do two or three of these
phases simultaneously, the next instruction can
start before the previous one is finished.

52

Instruction 1

Instruction 2

Instruction 3

o
<

]

L|J

| Decode I

LI
d

.
<

a. No pipelining

b. Pipelining

Figure 5.24 Pipelining

Fetch Decode Fetch Decode Fetch
Fetch Decode Fetch Decode Fetch Decode
Fetch Decode Fetch Decode Fetch Decode

IDecode I o000

| Fetch I Fetch I Fetch |
— Time

Time

53

Parallel processing

Traditionally a computer had a single
control unit, a single arithmetic logic
unit and a single memory unit.

With the evolution in technology and
the drop In the cost, a single
computer has multiple control units,
multiple arithmetic logic units and
multiple memory units, today.

54

Parallel processing

This Idea Is referred to as parallel
processing. Like pipelining, parallel
processing can improve throughput.

SISD Single Instruction-stream, Single Data-stream

— SIMD Single Instruction-stream, Multiple Data-stream
| Organization I_
MISD Multiple Instruction-stream, Single Data-stream

FEEL

MIMD Multiple Instruction-stream, Multiple Data-stream

Figure 5.24 A taxonomy of computer organization

55

CU: Control unit
MU: Memory unit
PU: Processing unit

Load R1 40 14
Load R 50 > | 22
Instruction Data P PU
stream stream MU
a. Concept b. Configuration

Figure 5.26 SISD organization

56

|
ALU: Arithmetic Logic Unit
CU: Control Unit
MU: Memory Unit

14
— 22
—) ALU })=
TL.oad Rl 40 25
Load R, 50 > 32 -
[N N LN CU ;
Instruction 17 EALU =
stream —— 3]
streams MUs
a. Concept b. Implementation

Figure 5.27 SIMD organization

57

Load R1 40
Load R2 50
ILoad R3 380 14
>
Load R A 81 22
Load R, 120 Data
Load R 121 stream
L I 27
Instruction
streams

Figure 5.28 MISD organization

Load R, 40 14

1 >

Load R3 80 71

Load R26 120 32

Instruction Data MUs
streams streams

a. Concept b. Implementation

Figure 5.29 MIMD organization

59

A STIVIEILE
COMPUTER

60

A simple computer

A simple (unrealistic) computer, as
shown in Figure 5.30.

The simple computer has three
components: CPU, memory, and an
Input/output subsystem.

61

CPU Contents Address

(16 bits) (8 bits)
Ry i :
& 00
| % 01 =
ALU Program
Rys 3F
Registers 40 |
41
42
PC [00 Data
Control unit
FD |
Keyboard Monitor
Input/output devices
62

Figure 5.30 The components of a simple computer

| Nnstruction set

The simple computer is capable of having a

set of instructions. Each computer
Instruction consists of two parts: the
operation code (opcode) and the
operand (s).

The opcode specifies the type of operation
to be performed on the operand (s).

Each instruction consists of sixteen bits

divided into four 4-bit fields.

B The leftmost field contains the opcode and the
other three fields contains the operand or
address of operand (s).

63

Opcode Operand

4 bits 12 bits
a. Instruction format

Opcode |R-address [R-address |R-address Opcode Memory address R-address
Opcode |R-address |R-address Opcode [R-address Memory address
Opcode |R-address Opcode |R-address n Oorl

Opeode []

b. Instruction types

Figure 5.31 Format and different instruction types

64

Processing the instructions

[1 During the fetch phase,

B The instruction whose address is determined by the
PC is obtained from the memory and loaded into the
IR.

B The PC is incremented to point to the next instruction.
[1 During the decode phase,

B The instruction in IR is decoded and the required
operands are fetched from the register or from
memory.

[0 During the execute phase,

B The instruction is executed and the results are placed
In the appropriate memory location or the register.

65

Processing the instructions

Once the third phase is completed,
the control unit starts the cycle again,

but now the PC is pointing to the next
Instruction.

The process continues until the CPU

reaches a HALT instruction.

66

Table 5.4 List of instructions for the simple computer

Code |Operands

Instruction Action
d, d, | ds d,

HALT 0 Stops the execution of the program
LOAD 1 | Rp Ms Rp < Mg
STORE 2 Mp Rs [Mp < Rs
ADDI 3 | Rp | Rsy | Rsy |Rp< Rgy+Rso
ADDF 4 | Ry | Rs; | Rsy |Rp< Rsy+Rsy
MOVE 5 | Rp | Rs Rp < Rs
NOT 6 | Rp | Rs Rp < Rs
AND 7 Rp Rgy Rsz |Rp = Rgq AND Rg3
OR g Rp Rsy Rsz |Rp < Rsy OR Rsz
XOR 9 Rp Rs1 Rsz |Rp < Rgy XOR Rs>
INC A R R «—R+1
DEC B R R «—R-1
ROTATE C R n |0or1|RotyR
JUMP D R n IF Ry = R then PC = n, otherwise continue

Key: Rs, Rsy, Rgy: Hexadecimal address of source registers
Rp: Hexadecimal address of destination register
Ms: Hexadecimal address of source memory location
Mp: Hexadecimal address of destination memory location
n: hexadecimal number
dq, da, ds, dg: First, second, third, and fourth hexadecimal digits

67

An example

The computer can add two integers A
and B and create the result as C. We
assume that integers are in two’s
complement format. Mathematical
show: c-=-A+B

68

An example

Assume that the first two integers are
stored in memory locations (40),, and
(41),, and the result should be stored
In memory location (42),,. To do the
simple addition needs five instructions,
as shown next:

1. Load the contents of My into register Ry (Rg <= Myo).

2. Load the contents of My, into register Ry (R1 <= Myy).

3. Add the contents of Ry and Ry and place the result in R, (R, <= Rp + Ry).
4. Store the contents R, in My, (My; <— R2).

5. Halt.

An example

In the language of The simple

computer, these five instructions are

encoded as:

Code Interpretation

(1040);¢ | 1: LOAD 0: Ro 40: My

(1141);5 | 1: LOAD 1: Ry 41: My,

(3201)15 | 3: ADDI 2: R, 0: R 1: R,
(2422)¢ | 2: STORE 42: My 2: R,
(0000)15 | O: HALT

An example

Storing program and data

B Store the five-line program in memory starting
from location (00),, to (04) .

B Data needs to be stored in memory locations
(40) 6, (41),6, @and (42) .

Cycles

B One cycle per instruction.

B If we have a small program with five instructions,
we need five cycles.

B Add: 161 + 254 = 415. The numbers are shown
In memory in hexadecimal is, (O0Al),,, (OOFE) g,
and (O19F) .

71

Registers

RO 00A1 =
R'l
R2 1040 00
ALU 1141 01
Rl 5 3201 02
2422 03
0000 04
PC| 00 o (0Al 40
Control unit 00FE 41
42
Memory
o Fetch 9 Decode
o Execute
RO D M40 Decoding of (1040)16
72

Figure 5.32 Status of cycle 1

Registers

Roy| 00Al
, Ry| OOFE
R, 1040 00
ALU :—/ 1141 01
3201 02
Rys
2422 03
0000 04
PC| 01 00A1 40
Control unit \—————@ (0FE 41
42
Memory
o Fetch
9 Decode @1 <« My 1) Decoding of (1141)
9 Execute
73

Figure 5.33 Status of cycle 2

Q Registers
e 00A1

OOFE
019F 1040 00
1141 01
:7 3201 02
2422 03
0000 04
PC| o2 00A1 40
Control unit 00FE 41
42
Memory
o Fetch
9 Decode (R, €—— R,*R,) Decoding of (3201)
o Execute
74

Figure 5.34 Status of cycle 3

Registers

R, 00A1
R, 00FE
R, 019F e 1040
ALU 1141
R, s 3201
2422
0000
PC [03 o 00A1
Control unit 00FE
\ » (019F
Memory

ODecode (M o — Rz) Decoding of (2422),

00
01
02
03
04

40
41
42

Figure 5.35 Status of cycle 4

75

Registers
I
Ro[00Al
Ry 00FE
R2 019F 1040 00
ALU 1141 01
R s 3201 02
2422 03
»-_ 0000 04
PC | 04 00A1 40
Control unit 00FE 41
019F 42
Memory
o Fetch
p Decode | Talt) Decoding of (0000)
76

Figure 5.36 Status of cycle 5

Another example

In a real situation, we enter the first two
Integers into memory using an input device
such as keyboard, and we display the third
iInteger through an output device such as a
monitor.

Getting data via an input device is normally
called a read operation, while sending data
to an output device Is normally called a
write operation.

77

Another example

1. Read an integer into My.
2. Ry < Myp.

3. Read an integer into My.
4.Rq < My,.

5. Ry <— Rg + Ry.

6. My, < R2.

7. Write the integer from Mys.
8. Halt.

Read and Write operations using the
_OAD and STORE instruction.

Read data input to the CPU and write
data from the CPU.

78

Another example

Two instructions to read data into
memory or write data out of memory.

The read operation is:

R <= Mg Because the keyboard is assumed to be memory location (EF)¢
M <R

The write operation Is:

R< M

Mg <= R Because the monitor is assumed to be memory location (EF)+g

Another example

The program is coded as:

1 (1FFE) 16 5 (1040)16 9 (1F42)16
2 (240F)+¢ 6 (1141)46 10 (2FFF)1¢
3 (1FFE)16 7 (3201)4¢ 11 (0000)+¢
4 (241F)46 8 (2422)46

Operations 1 to 4 are for input and operations 9 and 10 are
for output. When we run this program, it waits for the user
to input two integers on the keyboard and press the enter
key. The program then calculates the sum and displays the
result on the monitor.

