ACN203S Discussion class – 2nd semester 2012

ACN203S

Questions to be discussed will be from the first semester (TL101 2012)

8:30 - 12:00

(Classes will be presented only in English)

ACN203S LECTURERS

Telephone nr's:

RK Nzhinga (Mr) 012 429 6937

JM Verster (Ms) 012 429 4767

Y Reyneke (Mrs) 012 429 4046

E-mail address:

ACN203S-12-S2@unisa.ac.za

GENERAL MATTERS: EXAM FORMAT

- 100 marks
- 2 hours
- 5 Questions (20 marks each)
- Previous exams uploaded on MyUnisa.
- Do not spot!
- English & Afrikaans available to student

TOPICS TO BE DISCUSSED:

1. Process Costing

2. Direct and absorption costing

3. Standard Costing

PROCESS COSTING

Process costing - statements

3 Process cost reports:

- Quantity statement
 (also called production statement)
- 2) Production cost statement
- 3) Cost allocation statement (also called allocation statement)

Process costing – methods of stock valuation

-The weighted average method

-FIFO-method

"What's the difference?"

Process costing – methods of stock valuation

1. QUANTITY STATEMENT

<u>FIFO</u>: Opening work in process (units) kept separate from units started and completed in the current period.

<u>WAM:</u> All units completed and transferred out are treated identically (opening WIP and units started and completed are combined in the output column).

Process costing – methods of stock valuation

2. PRODUCTION COST STATEMENT

<u>FIFO</u>: Only uses current period costs per equivalent unit.

<u>WAM</u>: All costs incurred (this period and prior period) are added together to find total costs for equivalent units produced.

3. ALLOCATION STATEMENT

The position of the normal loss allocated to units completed and transferred differs.

Note: Disclose opening costs separately under FIFO.

Quantity statement format (WAM)

Quantity statements: Weighted average method of stock valuation

			Equ	ivalent (ınits 💮	
Input		Output	Rawmate	rials	Conver	sion .
(units)	Details Work-in-process - Put into production Completed and transferred Normal loss Abnormal loss Work-in-process -	(units)	Units	%	Units	%

Quantity statement format (FIFO)

Quantity statement: First in first out method of stock valuation.

				Equivale	nt units	
Input		Output	Raw ma	terials	Conversi	on cost
(units)	Details Work-in-process Put into production Completed from: - Opening stock Current production Completed and transferred Normal loss Abnormal loss Work-in-process	(units)	Units	%	Units	9 /t

Quantity statement - steps to follow

Step ① Fill in the inputs

(Normally given in the question)

Quantity statement - Step ①

Does not depend on stock valuation method or wastage point.

Quantity statement - steps to follow

Step ② Total input = output

(Everything put into the process must be accounted for)

Quantity statement Step 2

(0%) – Beginning of process		Equivalent units				
Input (units)	Details	Output (units)	Mater Units	rial %	Conversi Units	on %
1 600	Work-in-process (1 February 2011)					
3 400	Put into production Completed and transferred Normal loss Abnormal loss Work-in-process (28 February 2011)					
5 000		5 000				

Quantity statement - steps to follow

Step 3 Fill in the output-unit column

(WAM vs FIFO)

Quantity statement - Step 3

<u>WA</u>

(25%)

Input (units)	Details
1 600	Work-in-process (1 February 2011)
3 400	Put into production Completed and transferred Normal loss Abnormal loss Work-in-process (28 February 2011)
5 000	

Output (units)

FIFO

(25%)

Input (units)	Details
1 600	Work-in-process
	(1 February 2011)
3 400	Put into production
	Completed from:
	- Opening stock
	- Current production
	Completed and transferred
	Normal loss
	Abnormal loss
	Work-in-process
	(28 February 2011)
5 000	

Output (units)

Quantity statement - Step 3

Look for:

O/s Conversion %
C/s Conversion %
Stock valuation method
Where wastage occurs

Quantity statement: output column

Calculation of normal loss (always start with the total of the input columns; apply the two separate rules):

Rule 1: If O/s Conversion % >= WP, EXCLUDE O/s from calc.

Rule 2: If C/s Conversion % < WP, EXCLUDE C/s from calc.

O/s for FIFO: If rule 1 is false (i.e. O/s was included in calc. of NL, decrease O/s in output column)

Quantity statement - steps to follow

Step @ Fill in the EQUIVALENT UNITS:

WIP opening (What still needs to happen in current process?)

WIP closing (What has already happened in the current process?)

Output	Equivalent units
O/s (FIFO)	100% - % of completion
Current production (FIFO) / C+T (WAM)	100%
C/s	% of completion
AL	M 100% C WP
NL	If C/s Conversion % >= WP: Zero If C/s Conversion % < WP: Do as for AL

25%; weighted average method

(25%)				Equiva	alent units	
Input (units)	Details	Output (units)	Mate Units	rial %	Conve Units	rsion %
1 600	Work-in-process (1 February 2011)					
3 400	Put into production Completed and					
	transferred	2 500	2 500	100	2 500	100
	Normal loss	500 ©	-	00	-	00
	Abnormal loss Work-in-process	1 200	1 200	100	300	25
	(28 February 2011)		800	100	400	-5 0 ②
5 000		5 000	4 500		3 200	

25%; FIFO method

(25%)				-	alent units	
lisiset		Outsut	Mate	riai	Conver	sion
Input (units)	Details	Output (units)	Units	%	Units	%
1 600	Work-in-process (1 February 2011)					
3 400	Put into production					
	Completed from: - Opening stock	1 440©	-	0	1 224	85
	- Current production	1 060	1 060	100	1 060	100
	Completed and transferred	2 500	1 060		2 284	
	Normal loss	500 ②	-	00	-	00
	Abnormal loss Work-in-process	1 200	1 200	100	300	25
	(28 February 2011)	800	800	100	400	50 ©
5 000		5 000	3 060	•	2 984	

75%; weighted average method

(75%)			Equivalent units			
Input (units)	Details	Output (units)	Mate Units	rial %	Conver Units	sion %
1 600	Work-in-process (1 February 2011)	(units)	omo		·	
3 400	Put into production Completed and					
	transferred	2 500	2 500	100	2 500	100
	Normal loss	420②	420	100②	315	75 ©
	Abnormal loss Work-in-process	1 280	1 280	100	960	75
	(28 February 2011)	800	800	100	400	50 ©
5 000	•	5 000	5 000		4175	

75%; FIFO method

(75%)				Equiva	alent units	
			Mate	erial	Conver	sion
Input		Output				
(units)	Details	(units)	Units	9/0	Units	%
1 600	□ Work-in-process					
	(1 February 2011)					
3 400	Put into production					
	Completed from:					
	- O pening stock	1 440 🔞	-	0	1 224	85
	- Current production	1 060	1 060	100	1 060	100
	Completed and transferred	2 500	1 060		2 284	
	Normal loss	420 ③	420	100🛭	315	75 ②
	Abnormal loss	1 280	1 280	100	960	75
	Work-in-process					
	(28 F ebruary 2011)	800	800	100	400	50 ©
5 000	<u>-</u>	5 000	3 560	ı	3 959	

Production cost statement

WAM Include O/s in calc. of cost per equivalent unit

FIFO Exclude O/s from calc. of cost per equivalent unit

Production cost statement (25%; weighted average)

WA (25%):

*** (E370).			R
Opening work-in-process for Material Conversion costs February 2012 production co		180 000 240 000	
Material Conversion costs	515		675 000 525 000
	Total	Material	Conversion costs
Work in process on	R	R	R
1 February 2012 Current production Total	420 000 1 200 000 1 620 000	180 000 675 000 855 000	240 000 525 000 765 000
Equivalent units		4 500	3 200
Cost per equivalent unit (total costs / equivalent unit column totals)	R429,06	R190,00	R239,06

Production cost statement (25%; FIFO)

	R
Opening work-in-process for February 2012	
Material	180 000
Conversion costs	240 000
February 2012 production costs	
Material	675 000
Conversion costs	525 000

FIFO (25%):

	Total	Material	Conversion costs
	R	R	R
Work in process on 1 February 2012			
(R180 000 + R240 000) Current production Total	420 000 1 200 000 1 620 000	675 000	525 000
Equivalent units		3 060	2 984
Cost per equivalent unit (current production costs / equivalent unit column totals)	-R396,53	R220,59	R175,94

Cost allocation statement

Cost allocation statement

- NL calc. and allocation: Do only if C/s Conversion % < WP
- Use M & C units from separate equivalent unit columns in quantity statement and R/unit from production cost statement to calculate NL in Rand
- Allocate to AL & Completed and transferred units (from output column)
- WAM format:

```
C+T
       Μ
       С
       NL
AL
       Μ
       \mathbb{C}
       NL
WIP (Closing)
       M
FIFO format:
WIP (opening) - usually given
Current production (work with totals)
       M
       C
       NL
=C+T
AL
       Μ
       С
       NL
WIP (Closing)
       M
```


Cost allocation statement (25%; weighted average)

Cost allocation statement (weighted average; 25%)	
Completed and transferred	1 072 650
Material (2 500 × 190)	475 000
Conversion costs (2 500 x 239,06)	597 650
Cost of normal loss allocated (not applicable)	-
Alexander III and	200 740
Abnormal loss	299 718
Material (1 200 x 190)	228 000
Conversion costs (300 x 239,06)	71 718
Cost of normal loss allocated (not applicable)	-
Work-in-process 31 January 2010	247 624
Material (800 X 190)	152 000
Conversion costs (400 X 239,06)	95 624
Total costs allocated	1 619 992
Rounding difference	8
Total costs to be allocated as per production cost statement	1 620 000

Cost allocation statement (25%; FIFO)

Cost allocation statement (FIFO; 25%)	
Work-in-process 1 January 2010	420 000
Material (given)	180 000
Conversion costs (given)	240 000
Current production	635 672
Material (1 060 x 220,59)	233 825
Conversion costs (2 284 x 175,94)	401 847
Cost of normal loss allocated (not applicable)	-
Cost of production transferred	1 055 672
Abnorm al loss	317 490
Material (1 200 x 220,59)	264 708
Conversion costs (300 x 175,94)	52 782
Cost of normal loss allocated (not applicable)	-
Work-in-process 31 January 2010	246 848
Material (800 X 220,59)	176 472
Conversion costs (400 X 175,94)	70 376
Total costs allocated	1 620 010
Rounding difference	(10)
Total costs to be allocated as per production cost statement	1 620 000

DIRECT & ABSORPTION COSTING

Cost determination methods

DIRECT & ABSORPTION COSTING

AIM?

➤ To find the cost of manufacturing one unit (product cost).

WHY?

For ACN203S- Inventory valuation purpose & profit determination

HOW?

Direct costing method or Absorption costing

DIRECT COSTING METHOD

Direct costing includes <u>only variable manufacturing</u> <u>costs</u> when valuing stock.

THUS

- Opening stock units @ variable cost per unit
- Current production units @ variable cost per unit
- Closing stock units @ variable cost per unit

DIRECT COSTING METHOD (cont.)

- Non-manufacturing variable costs (e.g. selling and administration costs) are taken into account to calculate marginal income
- All fixed costs (manufacturing & non-manufacturing) are not included when valuing stock. These costs are considered as period costs and are charged directly to profit. (I/S)
- FIFO AND WEIGHTED AVERAGE METHOD (Effect on direct costing Income statement). Refer Question 3, Assignment 2/2012.
- ➤ Income statement example next slide

DIRECT COSTING METHOD (cont.)

Directing costing Income statement

Sales	XXX
Less: Variable cost of sales	
Opening stock	XX
Production: variable manuf. costs	XX
Less: closing stock	(xxx)
Less: Variable selling & Admin costs	(xxx)
Marginal income	XXX
Less: Fixed costs	(xxx)
Production	XX
Adminstration	XX
Net Profit _	XXX

ABSORPTION COSTING METHOD

When using absorption costing method, <u>fixed</u> <u>manufacturing costs</u> are also allocated to individual products and included in valuing stock.

THUS

- Opening stock units @ variable & fixed manufacturing cost per unit
- Current production units @ variable & fixed manufacturing cost per unit
- Closing stock units @ variable & fixed manufacturing cost per unit

ABSORPTION COSTING METHOD (cont.)

- Non-manufacturing costs (variable and fixed costs) are treated as <u>period costs</u> and are charged directly to income.
- FIFO AND WEIGHTED AVARAGE METHOD (Effect on Absorption costing Income statement). Refer Question 3, Assignment 2/2012 (First semester).
- ➤ Income statement example next slide

ABSORPTION COSTING METHOD (cont.)

Absorption costing Income statement

Sales XXX (xxx)Less: Cost of sales Opening stock XX Production: variable & fixed **manuf.** costs XX (xxx)Less: closing stock Gross profit XXX Less: Non-manufacturing costs (xxx)Variable XX

Fixed <u>xx</u>

Net Profit <u>xxx</u>

Question 3 Assignment 2, First semester 2012 (included in TL101)

Step 1: Calculation of the number of units (it will be the same irrespective of method)

Formula: Opening stock + Production – Sales = Closing stock

Question 3 Assignment 2, First semester 2012 (included in TL101)

Step 2: Identify the variable production costs and the fixed production costs:

From the question, identify the variable production costs and fixed production costs. Note that the split for the overheads were not given.

Variable production costs	November	December
Direct material Direct labour Overheads	R70 R25 <u>R?</u> R?	R72 R27 <u>R?</u> R?
Fixed production costs	November	December
Overheads	R?	R?

We know that overheads will have a fixed portion and a variable portion as it is a semivariable costs, but we have to use the high-low method to determine the split...

Question 3 Assignment 2, First semester 2012 (included in TL101)

Step 3: Draft the respective income statements

RECONCILIATION OF NET PROFITS

RECONCILIATION BETWEEN DIRECT AND ABSORPTION COSTING PROFITS

The difference between direct and absorption costing net profits is equal to the <u>difference in opening and</u> <u>closing stock</u>.

Learning objective 3: Reconcile the difference in net profit between the two methods

With the recon – Make sure you know the **format** – start with your net profit according to the absorption costing method. Then also show the net profit according to the direct costing method.

Then show what this **difference** reflects: **The difference** between the opening stock & closing stock for both methods.

DIRECT & ABSORPTION COSTING (recap)

DIRECT & ABSORPTION COSTING

QUESTIONS

"Standard" = Norm, criteria used to measure excellence laid down to give a measure against which actual figures can be measured in order to identify variances and take corrective action.

Standard cost = calculated cost of a product at a particular production volume under a given set of conditions (pre-calculated costs)

Variance = difference between <u>standard</u> costs and the <u>actual</u> costs of manufacturing the product on the one hand, and the difference between the <u>standard</u> selling price and the <u>actual</u> selling price (xAQ) on the other hand.

Variances may be *favourable* or *unfavourable*.

Variances for ACN203S:

*Direct material

Total variance; Material purchase price variance; Material quantity variance

*Direct labour

Total variance; Labour rate variance; Labour efficiency variance

*Variable manufacturing overheads - Variable with hours worked

Total variance; Overhead rate variance; Overhead efficiency variance

*Variable manufacturing overheads - Variable with production

Total variance; Overhead rate variance; Overhead efficiency variance

*Variable sales and distribution overheads

Total variance; Expenditure variance; Volume variance

*Sales price variance

TOTAL VARIANCE =

A lot of students don't realise that the TOTAL variance as a whole (from actual to standard) is made up from two separate sub-variances

PRICE/RATE/EXPENDITURE VARIANCE

+ QUANTITY/EFFICIENCY/VOLUMEVARIANCE

STANDARD COSTING – NB principle

Example to illustrate principle:

Standard direct material (R7 per kg x 80,000kg) R560,000 Actual direct material (R7.50 per kg x 78,000kg) R585,000

Total variance R25,000

(unfavourable)

This variance of R25,000 is made up of two "sub variances":

Price/ Rate variance: (78,000kg x R7.50) – (78,000kg x R7)

= R39,000 unfavourable

Volume/Quantity: (78,000 kg x R7) - (80,000 kg x R7)

= R14,000 favourable

The **principle** is thus:

R39,000 - R14,000 = R25,000 which is equal to the **total** variance

above

STANDARD COSTING – NB principle

When calculating price/rate variances:

- -quantity/hours remain unchanged.
- -compare standard and actual costs.

When calculating quantity/efficiency variances:

- -price/rate remain unchanged.
- -compare actual and standard quantity/hours.

STANDARD COSTING – NB principle

With all the <u>"expense"-variances</u> — whenever the actual cost is more than the standard cost, the variance is unfavourable.

With an "income"-variance — whenever the actual price is more than the standard price, the variance is favourable.

STANDARD COSTING – Framework

STANDARD COSTING – Framework

The framework that you can use for the income variances:			
<u>Income</u>			
AIncome or AQxAP	AQxSP f u <	This leg will not be required from ACN203S students	
Selling price	Quantity	y	
	Total		

QUESTIONS

