
Oracle Database 10g: SQL
Fundamentals II

Electronic Presentation

D17111GC11
Production 1.1
August 2004
D39754

®

Copyright © 2004, Oracle. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Reverse engineering of the software is prohibited. If this documentation is delivered to a U.S.
Government Agency of the Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for commercial computer
software and shall be deemed to be Restricted Rights software under Federal law, as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software
(October 1988).

This material or any portion of it may not be copied in any form or by any means without the express
prior written permission of the Education Products group of Oracle Corporation. Any other copying is
a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the Department of
Defense, then it is delivered with “Restricted Rights,” as defined in FAR 52.227-14, Rights in Data-
General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any problems in the
documentation, please report them in writing to Worldwide Education Services, Oracle Corporation,
500Oracle Parkway, Box SB-6, Redwood Shores, CA 94065. Oracle Corporation does not warrant
that this document is error-free.

Oracle and all references to Oracle Products are trademarks or registered trademarks of Oracle
Corporation.

All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

Author

Priya Vennapusa

Technical Contributors and
Reviewers

Brian Boxx
Andrew Brannigan
Zarko Cesljas
Marjolein Dekkers
Joel Goodman
Nancy Greenberg
Stefan Grenstad
Rosita Hanoman
Angelika Krupp
Christopher Lawless
Malika Marghadi
Priya Nathan
Ruediger Steffan

Publisher

Hemachitra K

Copyright © 2004, Oracle. All rights reserved.

Introduction

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• List the course objectives
• Describe the sample tables used in the course

Copyright © 2004, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:
• Use advanced SQL data retrieval techniques to

retrieve data from database tables
• Apply advanced techniques in a practice that

simulates real life

Copyright © 2004, Oracle. All rights reserved.

Course Overview

In this course, you will use advanced SQL data
retrieval techniques such as:
• Datetime functions
• ROLLUP, CUBE operators, and GROUPING SETS
• Hierarchical queries
• Correlated subqueries
• Multitable inserts
• Merge operation
• External tables
• Regular expression usage

Copyright © 2004, Oracle. All rights reserved.

Course Application

EMPLOYEES DEPARTMENTS

COUNTRIESREGIONS

LOCATIONS

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
• The course objectives
• The sample tables used in the course

Copyright © 2004, Oracle. All rights reserved.

Controlling User Access

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Differentiate system privileges from object

privileges
• Grant privileges on tables
• View privileges in the data dictionary
• Grant roles
• Distinguish between privileges and roles

Copyright © 2004, Oracle. All rights reserved.

Controlling User Access

Database
administrator

Users

Username and password
Privileges

Copyright © 2004, Oracle. All rights reserved.

Privileges

• Database security:
– System security
– Data security

• System privileges: Gaining access to the database
• Object privileges: Manipulating the content of the

database objects
• Schemas: Collection of objects such as tables,

views, and sequences

Copyright © 2004, Oracle. All rights reserved.

System Privileges

• More than 100 privileges are available.
• The database administrator has high-level system

privileges for tasks such as:
– Creating new users
– Removing users
– Removing tables
– Backing up tables

Copyright © 2004, Oracle. All rights reserved.

Creating Users

The DBA creates users with the CREATE USER
statement.

CREATE USER HR
IDENTIFIED BY HR;
User created.

CREATE USER user
IDENTIFIED BY password;

Copyright © 2004, Oracle. All rights reserved.

User System Privileges

• After a user is created, the DBA can grant specific
system privileges to that user.

• An application developer, for example, may have
the following system privileges:
– CREATE SESSION

– CREATE TABLE

– CREATE SEQUENCE

– CREATE VIEW

– CREATE PROCEDURE

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

Copyright © 2004, Oracle. All rights reserved.

Granting System Privileges

The DBA can grant specific system privileges to a
user.

GRANT create session, create table,
create sequence, create view

TO scott;
Grant succeeded.

Copyright © 2004, Oracle. All rights reserved.

What Is a Role?

Allocating privileges
without a role

Allocating privileges
with a role

Privileges

Users

Manager

Copyright © 2004, Oracle. All rights reserved.

Creating and Granting Privileges to a Role

• Create a role

• Grant privileges to a role

• Grant a role to users

CREATE ROLE manager;
Role created.

GRANT create table, create view
TO manager;
Grant succeeded.

GRANT manager TO DE HAAN, KOCHHAR;
Grant succeeded.

Copyright © 2004, Oracle. All rights reserved.

Changing Your Password

• The DBA creates your user account and initializes
your password.

• You can change your password by using the
ALTER USER statement.

ALTER USER HR
IDENTIFIED BY employ;
User altered.

Copyright © 2004, Oracle. All rights reserved.

Object Privileges

Object
Privilege Table View Sequence Procedure

ALTER √ √

DELETE √ √

EXECUTE √

INDEX √

INSERT √ √

REFERENCES √

SELECT √ √ √

UPDATE √ √

Copyright © 2004, Oracle. All rights reserved.

Object Privileges

• Object privileges vary from object to object.
• An owner has all the privileges on the object.
• An owner can give specific privileges on that

owner’s object.
GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

Copyright © 2004, Oracle. All rights reserved.

Granting Object Privileges

• Grant query privileges on the EMPLOYEES table.

• Grant privileges to update specific columns to
users and roles.

GRANT select
ON employees
TO sue, rich;
Grant succeeded.

GRANT update (department_name, location_id)
ON departments
TO scott, manager;
Grant succeeded.

Copyright © 2004, Oracle. All rights reserved.

Passing On Your Privileges

• Give a user authority to pass along privileges.

• Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT select, insert
ON departments
TO scott
WITH GRANT OPTION;
Grant succeeded.

GRANT select
ON alice.departments
TO PUBLIC;
Grant succeeded.

Copyright © 2004, Oracle. All rights reserved.

Confirming Privileges Granted

Data Dictionary View Description

ROLE_SYS_PRIVS System privileges granted to roles

ROLE_TAB_PRIVS Table privileges granted to roles

USER_ROLE_PRIVS Roles accessible by the user

USER_TAB_PRIVS_MADE Object privileges granted on the user’s
objects

USER_TAB_PRIVS_RECD Object privileges granted to the user

USER_COL_PRIVS_MADE Object privileges granted on the
columns of the user’s objects

USER_COL_PRIVS_RECD Object privileges granted to the user on
specific columns

USER_SYS_PRIVS System privileges granted to the user

Copyright © 2004, Oracle. All rights reserved.

Revoking Object Privileges

• You use the REVOKE statement to revoke
privileges granted to other users.

• Privileges granted to others through the WITH
GRANT OPTION clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object
FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS];

Copyright © 2004, Oracle. All rights reserved.

Revoking Object Privileges

As user Alice, revoke the SELECT and INSERT
privileges given to user Scott on the DEPARTMENTS
table.
REVOKE select, insert
ON departments
FROM scott;
Revoke succeeded.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about
statements that control access to the database and
database objects.

Statement Action

CREATE USER Creates a user (usually performed by a DBA)

GRANT Gives other users privileges to access the
objects

CREATE ROLE Creates a collection of privileges (usually
performed by a DBA)

ALTER USER Changes a user’s password

REVOKE Removes privileges on an object from users

Copyright © 2004, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
• Granting other users privileges to your table
• Modifying another user’s table through the

privileges granted to you
• Creating a synonym
• Querying the data dictionary views related to

privileges

Copyright © 2004, Oracle. All rights reserved.

Manage Schema Objects

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Add constraints
• Create indexes
• Create indexes using the CREATE TABLE

statement
• Creating function-based indexes
• Drop columns and set column UNUSED
• Perform FLASHBACK operations
• Create and use external tables

Copyright © 2004, Oracle. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to:
• Add a new column
• Modify an existing column
• Define a default value for the new column
• Drop a column

Copyright © 2004, Oracle. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or
drop columns.
ALTER TABLE table
ADD (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
DROP (column);

Copyright © 2004, Oracle. All rights reserved.

Adding a Column

• You use the ADD clause to add columns.

• The new column becomes the last column.

…

ALTER TABLE dept80
ADD (job_id VARCHAR2(9));
Table altered.

Copyright © 2004, Oracle. All rights reserved.

Modifying a Column

• You can change a column’s data type, size, and
default value.

• A change to the default value affects only
subsequent insertions to the table.

ALTER TABLE dept80
MODIFY (last_name VARCHAR2(30));
Table altered.

Copyright © 2004, Oracle. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns you no
longer need from the table.

ALTER TABLE dept80
DROP COLUMN job_id;
Table altered.

Copyright © 2004, Oracle. All rights reserved.

ALTER TABLE <table_name>
SET UNUSED(<column_name>);

ALTER TABLE <table_name>
SET UNUSED COLUMN <column_name>;

The SET UNUSED Option

• You use the SET UNUSED option to mark one or
more columns as unused.

• You use the DROP UNUSED COLUMNS option to
remove the columns that are marked as unused.

OR

ALTER TABLE <table_name>
DROP UNUSED COLUMNS;

Copyright © 2004, Oracle. All rights reserved.

Adding a Constraint Syntax

Use the ALTER TABLE statement to:
• Add or drop a constraint, but not modify its

structure
• Enable or disable constraints
• Add a NOT NULL constraint by using the MODIFY

clause

ALTER TABLE <table_name>
ADD [CONSTRAINT <constraint_name>]
type (<column_name>);

Copyright © 2004, Oracle. All rights reserved.

ALTER TABLE emp2
modify employee_id Primary Key;
Table altered.

Adding a Constraint

Add a FOREIGN KEY constraint to the EMP2 table
indicating that a manager must already exist as a valid
employee in the EMP2 table.

ALTER TABLE emp2
ADD CONSTRAINT emp_mgr_fk
FOREIGN KEY(manager_id)
REFERENCES emp2(employee_id);

Table altered.

Copyright © 2004, Oracle. All rights reserved.

ON DELETE CASCADE

Delete child rows when a parent key is deleted.

ALTER TABLE Emp2 ADD CONSTRAINT emp_dt_fk
FOREIGN KEY (Department_id)
REFERENCES departments ON DELETE CASCADE);
Table altered.

Copyright © 2004, Oracle. All rights reserved.

Deferring Constraints

Constraints can have the following attributes:
• DEFERRABLE or NOT DEFERRABLE
• INITIALLY DEFERRED or INITIALLY IMMEDIATE

ALTER TABLE dept2
ADD CONSTRAINT dept2_id_pk
PRIMARY KEY (department_id)
DEFERRABLE INITIALLY DEFERRED

ALTER SESSION
SET CONSTRAINTS= IMMEDIATE

SET CONSTRAINTS dept2_id_pk IMMEDIATE

Deferring constraint on
creation

Changing all constraints for a
session

Changing a specific
constraint attribute

Copyright © 2004, Oracle. All rights reserved.

Dropping a Constraint

• Remove the manager constraint from the EMP2
table.

• Remove the PRIMARY KEY constraint on the
DEPT2 table and drop the associated FOREIGN
KEY constraint on the EMP2.DEPARTMENT_ID
column.

ALTER TABLE emp2
DROP CONSTRAINT emp_mgr_fk;
Table altered.

ALTER TABLE dept2
DROP PRIMARY KEY CASCADE;
Table altered.

Copyright © 2004, Oracle. All rights reserved.

Disabling Constraints

• Execute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.

• Apply the CASCADE option to disable dependent
integrity constraints.

ALTER TABLE emp2
DISABLE CONSTRAINT emp_dt_fk;
Table altered.

Copyright © 2004, Oracle. All rights reserved.

Enabling Constraints

• Activate an integrity constraint currently disabled
in the table definition by using the ENABLE clause.

• A UNIQUE index is automatically created if you
enable a UNIQUE key or PRIMARY KEY constraint.

ALTER TABLE emp2
ENABLE CONSTRAINT emp_dt_fk;
Table altered.

Copyright © 2004, Oracle. All rights reserved.

Cascading Constraints

• The CASCADE CONSTRAINTS clause is used along
with the DROP COLUMN clause.

•• TThe CASCADE CONSTRAINTS clause drops all
referential integrity constraints that refer to the
primary and unique keys defined on the dropped
columns.

• The CASCADE CONSTRAINTS clause also drops all
multicolumn constraints defined on the dropped
columns.

Copyright © 2004, Oracle. All rights reserved.

Cascading Constraints

Example:

ALTER TABLE emp2
DROP COLUMN employee_id CASCADE CONSTRAINTS;
Table altered.

ALTER TABLE test1
DROP (pk, fk, col1) CASCADE CONSTRAINTS;
Table altered.

Copyright © 2004, Oracle. All rights reserved.

Overview of Indexes

Indexes are created:
• Automatically

– PRIMARY KEY creation
– UNIQUE KEY creation

• Manually
– CREATE INDEX statement
– CREATE TABLE statement

Copyright © 2004, Oracle. All rights reserved.

CREATE INDEX with CREATE TABLE
Statement

CREATE TABLE NEW_EMP
(employee_id NUMBER(6)

PRIMARY KEY USING INDEX
(CREATE INDEX emp_id_idx ON
NEW_EMP(employee_id)),

first_name VARCHAR2(20),
last_name VARCHAR2(25));
Table created.

SELECT INDEX_NAME, TABLE_NAME
FROM USER_INDEXES
WHERE TABLE_NAME = 'NEW_EMP';

Copyright © 2004, Oracle. All rights reserved.

CREATE INDEX upper_dept_name_idx
ON dept2(UPPER(department_name));

Index created.

SELECT *
FROM dept2
WHERE UPPER(department_name) = 'SALES';

Function-Based Indexes

• A function-based index is based on expressions.
• The index expression is built from table columns,

constants, SQL functions, and user-defined
functions.

Copyright © 2004, Oracle. All rights reserved.

Removing an Index

• Remove an index from the data dictionary by
using the DROP INDEX command.

• Remove the UPPER_DEPT_NAME_IDX index from
the data dictionary.

• To drop an index, you must be the owner of the
index or have the DROP ANY INDEX privilege.

DROP INDEX upper_dept_name_idx;
Index dropped.

DROP INDEX index;

Copyright © 2004, Oracle. All rights reserved.

DROP TABLE … PURGE

DROP TABLE dept80 PURGE;

Copyright © 2004, Oracle. All rights reserved.

The FLASHBACK TABLE Statement

• Repair tool for accidental table modifications
– Restores a table to an earlier point in time
– Benefits: Ease of use, availability, fast execution
– Performed in place

• Syntax:

FLASHBACK TABLE[schema.]table[,
[schema.]table]...
TO { TIMESTAMP | SCN } expr
[{ ENABLE | DISABLE } TRIGGERS];

Copyright © 2004, Oracle. All rights reserved.

The FLASHBACK TABLE Statement

DROP TABLE emp2;
Table dropped

FLASHBACK TABLE emp2 TO BEFORE DROP;
Flashback complete

…

SELECT original_name, operation, droptime,
FROM recyclebin;

Copyright © 2004, Oracle. All rights reserved.

External Tables

Copyright © 2004, Oracle. All rights reserved.

Creating a Directory for the External Table

Create a DIRECTORY object that corresponds to the
directory on the file system where the external data
source resides.

CREATE OR REPLACE DIRECTORY emp_dir
AS '/…/emp_dir';

GRANT READ ON DIRECTORY emp_dir TO hr;

Copyright © 2004, Oracle. All rights reserved.

Creating an External Table

CREATE TABLE <table_name>
(<col_name> <datatype>, …)

ORGANIZATION EXTERNAL
(TYPE <access_driver_type>
DEFAULT DIRECTORY <directory_name>
ACCESS PARAMETERS
(…))
LOCATION ('<location_specifier>'))

REJECT LIMIT [0 | <number> | UNLIMITED];

Copyright © 2004, Oracle. All rights reserved.

Creating an External Table Using
ORACLE_LOADER

CREATE TABLE oldemp (
fname char(25), lname CHAR(25))
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER
DEFAULT DIRECTORY emp_dir
ACCESS PARAMETERS
(RECORDS DELIMITED BY NEWLINE
NOBADFILE
NOLOGFILE
FIELDS TERMINATED BY ','
(fname POSITION (1:20) CHAR,
lname POSITION (22:41) CHAR))
LOCATION ('emp.dat'))
PARALLEL 5
REJECT LIMIT 200;

Table created.

Copyright © 2004, Oracle. All rights reserved.

Querying External Tables

SELECT *
FROM oldemp

emp.dat
OLDEMP

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Add constraints
• Create indexes
• Create a primary key constraint using an index
• Create indexes using the CREATE TABLE

statement
• Creating function-based indexes
• Drop columns and set column UNUSED
• Perform FLASHBACK operations
• Create and use external tables

Copyright © 2004, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
• Altering tables
• Adding columns
• Dropping columns
• Creating indexes
• Creating external tables

Copyright © 2004, Oracle. All rights reserved.

Manipulating Large Data Sets

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Manipulate data using subqueries
• Describe the features of multitable inserts
• Use the following types of multitable inserts

– Unconditional INSERT
– Pivoting INSERT
– Conditional ALL INSERT
– Conditional FIRST INSERT

• Merge rows in a table
• Track the changes to data over a period of time

Copyright © 2004, Oracle. All rights reserved.

Using Subqueries to Manipulate Data

You can use subqueries in DML statements to:
• Copy data from one table to another
• Retrieve data from an inline view
• Update data in one table based on the values of

another table
• Delete rows from one table based on rows in a

another table

Copyright © 2004, Oracle. All rights reserved.

Copying Rows from Another Table

• Write your INSERT statement with a subquery.

• Do not use the VALUES clause.
• Match the number of columns in the INSERT

clause with that in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

33 rows created.

Copyright © 2004, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM empl3
WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000, 50);

1 row created.

Copyright © 2004, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

Verify the results.

SELECT employee_id, last_name, email, hire_date,
job_id, salary, department_id

FROM employees
WHERE department_id = 50;

…

Copyright © 2004, Oracle. All rights reserved.

SELECT a.last_name, a.salary,
a.department_id, b.salavg

FROM employees a, (SELECT department_id,
AVG(salary) salavg
FROM employees
GROUP BY department_id) b

WHERE a.department_id = b.department_id
AND a.salary > b.salavg;

Retrieving Data with a Subquery as Source

…

Copyright © 2004, Oracle. All rights reserved.

UPDATE empl3
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 168)

WHERE employee_id = 114;
1 row updated.

Updating Two Columns with a Subquery

Update the job and salary of employee 114 to match
the job of employee 205 and the salary of employee
168.

Copyright © 2004, Oracle. All rights reserved.

UPDATE empl3
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

1 row updated.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update rows
in a table based on values from another table.

Copyright © 2004, Oracle. All rights reserved.

DELETE FROM empl3
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name

LIKE '%Public%');
1 row deleted.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove rows
from a table based on values from another table.

Copyright © 2004, Oracle. All rights reserved.

Using the WITH CHECK OPTION Keyword
on DML Statements

• A subquery is used to identify the table and
columns of the DML statement.

• The WITH CHECK OPTION keyword prohibits you
from changing rows that are not in the subquery.

INSERT INTO (SELECT employee_id, last_name, email,
hire_date, job_id, salary

FROM empl3
WHERE department_id = 50

WITH CHECK OPTION)
VALUES (99998, 'Smith', 'JSMITH',

TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000);

INSERT INTO
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

Copyright © 2004, Oracle. All rights reserved.

Overview of the Explicit Default Feature

• With the explicit default feature, you can use the
DEFAULT keyword as a column value where the
column default is desired.

• The addition of this feature is for compliance with
the SQL:1999 standard.

• This allows the user to control where and when
the default value should be applied to data.

• Explicit defaults can be used in INSERT and
UPDATE statements.

Copyright © 2004, Oracle. All rights reserved.

Using Explicit Default Values

• DEFAULT with INSERT:

• DEFAULT with UPDATE:

INSERT INTO deptm3
(department_id, department_name, manager_id)

VALUES (300, 'Engineering', DEFAULT);

UPDATE deptm3
SET manager_id = DEFAULT
WHERE department_id = 10;

Copyright © 2004, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

INSERT ALL
INTO table_a VALUES(…,…,…)
INTO table_b VALUES(…,…,…)
INTO table_c VALUES(…,…,…)
SELECT …
FROM sourcetab
WHERE …;

Table_a

Table_b

Table_c

Copyright © 2004, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

• The INSERT…SELECT statement can be used to
insert rows into multiple tables as part of a single
DML statement.

• Multitable INSERT statements can be used in data
warehousing systems to transfer data from one or
more operational sources to a set of target tables.

• They provide significant performance
improvement over:
– Single DML versus multiple INSERT…SELECT

statements
– Single DML versus a procedure to do multiple

inserts using IF...THEN syntax

Copyright © 2004, Oracle. All rights reserved.

Types of Multitable INSERT Statements

The different types of multitable INSERT statements
are:
• Unconditional INSERT
• Conditional ALL INSERT
• Conditional FIRST INSERT
• Pivoting INSERT

Copyright © 2004, Oracle. All rights reserved.

Multitable INSERT Statements

• Syntax

• conditional_insert_clause

INSERT [ALL] [conditional_insert_clause]
[insert_into_clause values_clause] (subquery)

[ALL] [FIRST]
[WHEN condition THEN] [insert_into_clause values_clause]
[ELSE] [insert_into_clause values_clause]

Copyright © 2004, Oracle. All rights reserved.

Unconditional INSERT ALL

• Select the EMPLOYEE_ID, HIRE_DATE, SALARY, and
MANAGER_ID values from the EMPLOYEES table for
those employees whose EMPLOYEE_ID is greater
than 200.

• Insert these values into the SAL_HISTORY and
MGR_HISTORY tables using a multitable INSERT.

INSERT ALL
INTO sal_history VALUES(EMPID,HIREDATE,SAL)
INTO mgr_history VALUES(EMPID,MGR,SAL)
SELECT employee_id EMPID, hire_date HIREDATE,

salary SAL, manager_id MGR
FROM employees
WHERE employee_id > 200;

12 rows created.

Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT ALL

• Select the EMPLOYEE_ID, HIRE_DATE, SALARY, and
MANAGER_ID values from the EMPLOYEES table for
those employees whose EMPLOYEE_ID is greater
than 200.

• If the SALARY is greater than $10,000, insert these
values into the SAL_HISTORY table using a
conditional multitable INSERT statement.

• If the MANAGER_ID is greater than 200, insert these
values into the MGR_HISTORY table using a
conditional multitable INSERT statement.

Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT ALL

INSERT ALL

WHEN SAL > 10000 THEN

INTO sal_history VALUES(EMPID,HIREDATE,SAL)

WHEN MGR > 200 THEN

INTO mgr_history VALUES(EMPID,MGR,SAL)

SELECT employee_id EMPID,hire_date HIREDATE,
salary SAL, manager_id MGR

FROM employees
WHERE employee_id > 200;

4 rows created.

Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT FIRST

• Select the DEPARTMENT_ID, SUM(SALARY), and
MAX(HIRE_DATE) from the EMPLOYEES table.

• If the SUM(SALARY) is greater than $25,000, then
insert these values into the SPECIAL_SAL, using a
conditional FIRST multitable INSERT.

• If the first WHEN clause evaluates to true, then the
subsequent WHEN clauses for this row should be
skipped.

• For the rows that do not satisfy the first WHEN
condition, insert into the HIREDATE_HISTORY_00,
HIREDATE_HISTORY_99, or HIREDATE_HISTORY
tables, based on the value in the HIRE_DATE
column using a conditional multitable INSERT.

Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT FIRST

INSERT FIRST
WHEN SAL > 25000 THEN
INTO special_sal VALUES(DEPTID, SAL)

WHEN HIREDATE like ('%00%') THEN
INTO hiredate_history_00 VALUES(DEPTID,HIREDATE)

WHEN HIREDATE like ('%99%') THEN
INTO hiredate_history_99 VALUES(DEPTID, HIREDATE)

ELSE
INTO hiredate_history VALUES(DEPTID, HIREDATE)
SELECT department_id DEPTID, SUM(salary) SAL,

MAX(hire_date) HIREDATE
FROM employees
GROUP BY department_id;

12 rows created.

Copyright © 2004, Oracle. All rights reserved.

Pivoting INSERT

• Suppose you receive a set of sales records from a
nonrelational database table,
SALES_SOURCE_DATA, in the following format:
EMPLOYEE_ID, WEEK_ID, SALES_MON, SALES_TUE,
SALES_WED, SALES_THUR, SALES_FRI

• You want to store these records in the
SALES_INFO table in a more typical relational
format:
EMPLOYEE_ID, WEEK, SALES

• Using a pivoting INSERT, convert the set of sales
records from the nonrelational database table to
relational format.

Copyright © 2004, Oracle. All rights reserved.

Pivoting INSERT

INSERT ALL

INTO sales_info VALUES (employee_id,week_id,sales_MON)

INTO sales_info VALUES (employee_id,week_id,sales_TUE)

INTO sales_info VALUES (employee_id,week_id,sales_WED)

INTO sales_info VALUES (employee_id,week_id,sales_THUR)

INTO sales_info VALUES (employee_id,week_id, sales_FRI)

SELECT EMPLOYEE_ID, week_id, sales_MON, sales_TUE,

sales_WED, sales_THUR,sales_FRI

FROM sales_source_data;
5 rows created.

Copyright © 2004, Oracle. All rights reserved.

The MERGE Statement

• Provides the ability to conditionally update or
insert data into a database table

• Performs an UPDATE if the row exists, and an
INSERT if it is a new row:
– Avoids separate updates
– Increases performance and ease of use
– Is useful in data warehousing applications

Copyright © 2004, Oracle. All rights reserved.

The MERGE Statement Syntax

You can conditionally insert or update rows in a table
by using the MERGE statement.

MERGE INTO table_name table_alias
USING (table|view|sub_query) alias
ON (join condition)
WHEN MATCHED THEN
UPDATE SET
col1 = col_val1,
col2 = col2_val

WHEN NOT MATCHED THEN
INSERT (column_list)
VALUES (column_values);

Copyright © 2004, Oracle. All rights reserved.

MERGE INTO empl3 c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
...
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

Merging Rows

Insert or update rows in the EMPL3 table to match the
EMPLOYEES table.

Copyright © 2004, Oracle. All rights reserved.

Merging Rows

MERGE INTO empl3 c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

...
WHEN NOT MATCHED THEN
INSERT VALUES...;

TRUNCATE TABLE empl3;

SELECT *
FROM empl3;
no rows selected

SELECT *
FROM empl3;

107 rows selected.

Copyright © 2004, Oracle. All rights reserved.

Tracking Changes in Data

Versions of retrieved rows

SELECT
…

Copyright © 2004, Oracle. All rights reserved.

Example of the Flashback Version Query

SELECT salary FROM employees3
WHERE employee_id = 107;

UPDATE employees3 SET salary = salary * 1.30
WHERE employee_id = 107;

COMMIT;

SELECT salary FROM employees3
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE

WHERE employee_id = 107;

1

2

3

Copyright © 2004, Oracle. All rights reserved.

The VERSIONS BETWEEN Clause

SELECT versions_starttime "START_DATE",
versions_endtime "END_DATE",
salary

FROM employees
VERSIONS BETWEEN SCN MINVALUE
AND MAXVALUE

WHERE last_name = 'Lorentz';

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use DML statements and control transactions
• Describe the features of multitable inserts
• Use the following types of multitable inserts

– Unconditional INSERT
– Pivoting INSERT
– Conditional ALL INSERT
– Conditional FIRST INSERT

• Merge rows in a table
• Manipulate data using subqueries
• Track the changes to data over a period of time

Copyright © 2004, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
• Performing multitable INSERTs
• Performing MERGE operations
• Tracking row versions

Copyright © 2004, Oracle. All rights reserved.

Generating Reports by Grouping
Related Data

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Use the ROLLUP operation to produce

subtotal values
• Use the CUBE operation to produce cross-

tabulation values
• Use the GROUPING function to identify the row

values created by ROLLUP or CUBE
• Use GROUPING SETS to produce a single result set

Copyright © 2004, Oracle. All rights reserved.

Review of Group Functions

• Group functions operate on sets of rows to give
one result per group.

• Example:

SELECT [column,] group_function(column). . .
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

SELECT AVG(salary), STDDEV(salary),
COUNT(commission_pct),MAX(hire_date)

FROM employees
WHERE job_id LIKE 'SA%';

Copyright © 2004, Oracle. All rights reserved.

Review of the GROUP BY Clause

• Syntax:

• Example:
SELECT department_id, job_id, SUM(salary),

COUNT(employee_id)
FROM employees
GROUP BY department_id, job_id ;

SELECT [column,]
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

group_function(column). . .

Copyright © 2004, Oracle. All rights reserved.

Review of the HAVING Clause

• Use the HAVING clause to specify which groups
are to be displayed.

• You further restrict the groups on the basis of a
limiting condition.

SELECT [column,] group_function(column)...
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING having_expression]
[ORDER BY column];

Copyright © 2004, Oracle. All rights reserved.

GROUP BY with ROLLUP and
CUBE Operators

• Use ROLLUP or CUBE with GROUP BY to produce
superaggregate rows by cross-referencing
columns.

• ROLLUP grouping produces a result set containing
the regular grouped rows and the subtotal values.

• CUBE grouping produces a result set containing
the rows from ROLLUP and cross-tabulation rows.

Copyright © 2004, Oracle. All rights reserved.

ROLLUP Operator

• ROLLUP is an extension to the GROUP BY clause.
• Use the ROLLUP operation to produce cumulative

aggregates, such as subtotals.
SELECT [column,] group_function(column). . .
FROM table
[WHERE condition]
[GROUP BY [ROLLUP] group_by_expression]
[HAVING having_expression];
[ORDER BY column];

Copyright © 2004, Oracle. All rights reserved.

ROLLUP Operator: Example

SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 60
GROUP BY ROLLUP(department_id, job_id);

3

1

2

Copyright © 2004, Oracle. All rights reserved.

CUBE Operator

• CUBE is an extension to the GROUP BY clause.
• You can use the CUBE operator to produce cross-

tabulation values with a single SELECT statement.

SELECT [column,] group_function(column)...
FROM table
[WHERE condition]
[GROUP BY [CUBE] group_by_expression]
[HAVING having_expression]
[ORDER BY column];

Copyright © 2004, Oracle. All rights reserved.

CUBE Operator: Example

SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 60
GROUP BY CUBE (department_id, job_id) ;

1

2

3

4

Copyright © 2004, Oracle. All rights reserved.

GROUPING Function

The GROUPING function:
• Is used with either the CUBE or ROLLUP operator
• Is used to find the groups forming the subtotal in

a row
• Is used to differentiate stored NULL values from

NULL values created by ROLLUP or CUBE
• Returns 0 or 1
SELECT [column,] group_function(column) .. ,

GROUPING(expr)
FROM table
[WHERE condition]
[GROUP BY [ROLLUP][CUBE] group_by_expression]
[HAVING having_expression]
[ORDER BY column];

Copyright © 2004, Oracle. All rights reserved.

GROUPING Function: Example
SELECT department_id DEPTID, job_id JOB,

SUM(salary),
GROUPING(department_id) GRP_DEPT,
GROUPING(job_id) GRP_JOB

FROM employees
WHERE department_id < 50
GROUP BY ROLLUP(department_id, job_id);

1
2

3

Copyright © 2004, Oracle. All rights reserved.

GROUPING SETS

• GROUPING SETS syntax is used to define multiple
groupings in the same query.

• All groupings specified in the GROUPING SETS
clause are computed and the results of individual
groupings are combined with a UNION ALL
operation.

• Grouping set efficiency:
– Only one pass over the base table is required.
– There is no need to write complex UNION

statements.
– The more elements GROUPING SETS has, the greater

the performance benefit.

Copyright © 2004, Oracle. All rights reserved.

GROUPING SETS: Example
SELECT department_id, job_id,

manager_id,avg(salary)
FROM employees
GROUP BY GROUPING SETS
((department_id,job_id), (job_id,manager_id));

…

1

…
2

Copyright © 2004, Oracle. All rights reserved.

Composite Columns

• A composite column is a collection of columns
that are treated as a unit.
ROLLUP (a, , d)

• Use parentheses within the GROUP BY clause to
group columns, so that they are treated as a unit
while computing ROLLUP or CUBE operations.

• When used with ROLLUP or CUBE, composite
columns would require skipping aggregation
across certain levels.

(b,c)

Copyright © 2004, Oracle. All rights reserved.

Composite Columns: Example

SELECT department_id, job_id, manager_id,
SUM(salary)

FROM employees
GROUP BY ROLLUP(department_id,(job_id, manager_id));

…
2

3

4

1

Copyright © 2004, Oracle. All rights reserved.

Concatenated Groupings

• Concatenated groupings offer a concise way to
generate useful combinations of groupings.

• To specify concatenated grouping sets, you
separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the Oracle
server combines them into a single GROUP BY
clause.

• The result is a cross-product of groupings from
each grouping set.

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

Copyright © 2004, Oracle. All rights reserved.

…

…
…

Concatenated Groupings: Example
SELECT department_id, job_id, manager_id,

SUM(salary)
FROM employees
GROUP BY department_id,

ROLLUP(job_id),
CUBE(manager_id);

1

2

3

4 5

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use
the:
• ROLLUP operation to produce subtotal values
• CUBE operation to produce cross-tabulation values
• GROUPING function to identify the row values

created by ROLLUP or CUBE
• GROUPING SETS syntax to define multiple

groupings in the same query
• GROUP BY clause to combine expressions in

various ways:
– Composite columns
– Concatenated grouping sets

Copyright © 2004, Oracle. All rights reserved.

Practice 4: Overview

This practice covers using:
• ROLLUP operators
• CUBE operators
• GROUPING functions
• GROUPING SETS

Copyright © 2004, Oracle. All rights reserved.

Managing Data in Different Time Zones

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
use the following datetime functions:
• TZ_OFFSET

• FROM_TZ

• TO_TIMESTAMP

• TO_TIMESTAMP_TZ

• TO_YMINTERVAL

• TO_DSINTERVAL

• CURRENT_DATE

• CURRENT_TIMESTAMP

• LOCALTIMESTAMP

• DBTIMEZONE

• SESSIONTIMEZONE

• EXTRACT

Copyright © 2004, Oracle. All rights reserved.

Time Zones

-08:00

The image represents the time for
each time zone when Greenwich
time is 12:00.

-05:00

+02:00 +10:00

+07:00

Copyright © 2004, Oracle. All rights reserved.

TIME_ZONE Session Parameter

TIME_ZONE may be set to:
• An absolute offset
• Database time zone
• OS local time zone
• A named region

ALTER SESSION SET TIME_ZONE = '-05:00';
ALTER SESSION SET TIME_ZONE = dbtimezone;
ALTER SESSION SET TIME_ZONE = local;
ALTER SESSION SET TIME_ZONE = 'America/New_York';

Copyright © 2004, Oracle. All rights reserved.

CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP

• CURRENT_DATE

– Returns the current date from the system
– Has a data type of DATE

• CURRENT_TIMESTAMP

– Returns the current timestamp from the system
– Has a data type of TIMESTAMP WITH TIME ZONE

• LOCALTIMESTAMP

– Returns the current timestamp from user session
– Has a data type of TIMESTAMP

Copyright © 2004, Oracle. All rights reserved.

CURRENT_DATE

Display the current date and time in the session’s time
zone.

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

ALTER SESSION SET TIME_ZONE = '-5:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

ALTER SESSION
SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

Copyright © 2004, Oracle. All rights reserved.

CURRENT_TIMESTAMP

Display the current date and fractional time in the
session’s time zone.

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP
FROM DUAL;

ALTER SESSION SET TIME_ZONE = '-5:0';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP
FROM DUAL;

Copyright © 2004, Oracle. All rights reserved.

LOCALTIMESTAMP

• Display the current date and time in the session’s
time zone in a value of TIMESTAMP data type.

• LOCALTIMESTAMP returns a TIMESTAMP value,
whereas CURRENT_TIMESTAMP returns a
TIMESTAMP WITH TIME ZONE value.

ALTER SESSION SET TIME_ZONE = '-5:0';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

Copyright © 2004, Oracle. All rights reserved.

DBTIMEZONE and SESSIONTIMEZONE

• Display the value of the database time zone.

• Display the value of the session’s time zone.

SELECT DBTIMEZONE FROM DUAL;

SELECT SESSIONTIMEZONE FROM DUAL;

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Data Type

• The TIMESTAMP data type is an extension of the
DATE data type.

• It stores the year, month, and day of the DATE data
type, plus hour, minute, and second values,
as well as the fractional second value.

• Variations in TIMESTAMP are:
– TIMESTAMP
[(fractional_seconds_precision)]_

– TIMESTAMP
[(fractional_seconds_precision)]_
WITH TIME ZONE

– TIMESTAMP
[(fractional_seconds_precision)]_
WITH LOCAL TIME ZONE

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Data Types

Same as the TIMESTAMP data type;
also includes a a time zone offset in
its value

TIMESTAMP WITH LOCAL
TIME ZONE

Same as the TIMESTAMP data type;
also includes:
TimeZone_Hour, and
TimeZone_Minute or
TimeZone_Region

TIMESTAMP WITH TIME
ZONE

Year, Month, Day, Hour, Minute,
Second with fractional secondsTIMESTAMP

FieldsData Type

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Fields

TIMEZONE_MINUTE
–12 to 14TIMEZONE_HOUR
00 to 59.9(N) where 9(N) is precisionSECOND
00 to 59MINUTE
00 to 23HOUR
01 to 31DAY
01 to 12MONTH
–4712 to 9999 (excluding year 0)YEAR

Valid ValuesDatetime Field

00 to 59

Copyright © 2004, Oracle. All rights reserved.

Difference between DATE and TIMESTAMP

-- when hire_date is
of type DATE

SELECT hire_date
FROM emp5;

ALTER TABLE emp5
MODIFY hire_date TIMESTAMP;

SELECT hire_date
FROM emp5;

BA

…
…

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH TIME ZONE Data Type

• TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone
displacement in its value.

• The time zone displacement is the difference,
in hours and minutes, between local time and
UTC.

• It is specified as:
TIMESTAMP[(fractional_seconds_precision)]
WITH TIME ZONE

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH TIMEZONE: Example

CREATE TABLE web_orders
(ord_id number primary key,
order_date TIMESTAMP WITH TIME ZONE);

INSERT INTO web_orders values
(ord_seq.nextval, current_date);

SELECT * FROM web_orders;

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE

• TIMESTAMP WITH LOCAL TIME ZONE is another
variant of TIMESTAMP that includes a time zone
displacement in its value.

• Data stored in the database is normalized to the
database time zone.

• The time zone displacement is not stored as part
of the column data.

• The Oracle database returns the data in the user’s
local session time zone.

• The TIMESTAMP WITH LOCAL TIME ZONE data
type is specified as follows:

TIMESTAMP[(fractional_seconds_precision)]
WITH LOCAL TIME ZONE

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE:
Example

CREATE TABLE shipping (delivery_time TIMESTAMP WITH
LOCAL TIME ZONE);

INSERT INTO shipping VALUES(current_timestamp + 2);

SELECT * FROM shipping;

ALTER SESSION SET TIME_ZONE = 'EUROPE/LONDON';

SELECT * FROM shipping;

Copyright © 2004, Oracle. All rights reserved.

INTERVAL Data Types

• INTERVAL data types are used to store the
difference between two datetime values.

• There are two classes of intervals:
– Year-month
– Day-time

• The precision of the interval is:
– The actual subset of fields that constitutes an

interval
– Specified in the interval qualifier

Days, Hour, Minute, Second with
fractional secondsINTERVAL DAY TO SECOND

Year, MonthINTERVAL YEAR TO MONTH

FieldsData Type

Copyright © 2004, Oracle. All rights reserved.

INTERVAL Fields

00 to 59.9(N) where 9(N) is precisionSECOND

00 to 59MINUTE

HOUR

DAY

MONTH

YEAR

INTERVAL Field

00 to 23

Any positive or negative integer

00 to 11

Any positive or negative integer

Valid Values for Interval

Copyright © 2004, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time
using the YEAR and MONTH datetime fields.

• For example:
INTERVAL YEAR [(year_precision)] TO MONTH

'312-2' assigned to INTERVAL YEAR(3) TO MONTH

Indicates an interval of 312 years and 2 months

'312-0' assigned to INTERVAL YEAR(3) TO MONTH

Indicates 312 years and 0 months

'0-3' assigned to INTERVAL YEAR TO MONTH

Indicates an interval of 3 months

Copyright © 2004, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH: Example

CREATE TABLE warranty
(prod_id number, warranty_time INTERVAL YEAR(3)
TO MONTH);

INSERT INTO warranty VALUES (123, INTERVAL '8'
MONTH);

INSERT INTO warranty VALUES (155, INTERVAL '200'
YEAR(3));

INSERT INTO warranty VALUES (678, '200-11');

SELECT * FROM warranty;

Copyright © 2004, Oracle. All rights reserved.

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND
(fractional_seconds_precision)stores a period
of time in days, hours, minutes, and seconds.

• For example:

INTERVAL DAY[(day_precision)] TO Second

INTERVAL '6 03:30:16' DAY TO SECOND

Indicates an interval of 6 days 3 hours 30 minutes
and 16 seconds

INTERVAL '6 00:00:00' DAY TO SECOND

Indicates an interval of 6 days and 0 hours, 0
minutes and 0 seconds

Copyright © 2004, Oracle. All rights reserved.

INTERVAL DAY TO SECOND
Data Type: Example

CREATE TABLE lab
(exp_id number, test_time INTERVAL DAY(2) TO
SECOND);

INSERT INTO lab VALUES (100012, '90 00:00:00');

INSERT INTO lab VALUES (56098,

INTERVAL '6 03:30:16' DAY TO SECOND);

SELECT * FROM lab;

Copyright © 2004, Oracle. All rights reserved.

EXTRACT

• Display the YEAR component from the SYSDATE.

• Display the MONTH component from the HIRE_DATE
for those employees whose MANAGER_ID is 100.

SELECT EXTRACT (YEAR FROM SYSDATE) FROM DUAL;

SELECT last_name, hire_date,
EXTRACT (MONTH FROM HIRE_DATE)

FROM employees
WHERE manager_id = 100;

Copyright © 2004, Oracle. All rights reserved.

TZ_OFFSET

• Display the time zone offset for the time zone
'US/Eastern'.

• Display the time zone offset for the time zone
'Canada/Yukon'.

• Display the time zone offset for the time zone
'Europe/London'.

SELECT TZ_OFFSET('US/Eastern') FROM DUAL;

SELECT TZ_OFFSET('Canada/Yukon') FROM DUAL;

SELECT TZ_OFFSET('Europe/London') FROM DUAL;

Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Conversion Using FROM_TZ

• Display the TIMESTAMP value '2000-03-28 08:00:00'
as a TIMESTAMP WITH TIME ZONE value.

• Display the TIMESTAMP value '2000-03-28 08:00:00'
as a TIMESTAMP WITH TIME ZONE value for the
time zone region 'Australia/North'.

SELECT FROM_TZ(TIMESTAMP
'2000-03-28 08:00:00','3:00')

FROM DUAL;

SELECT FROM_TZ(TIMESTAMP
'2000-03-28 08:00:00', 'Australia/North')

FROM DUAL;

Copyright © 2004, Oracle. All rights reserved.

SELECT
TO_TIMESTAMP_TZ('1999-12-01 11:00:00 -8:00',

'YYYY-MM-DD HH:MI:SS TZH:TZM')
FROM DUAL;

Converting to TIMESTAMP Using
TO_TIMESTAMP and TO_TIMESTAMP_TZ

• Display the character string '2000-12-01 11:00:00'
as a TIMESTAMP value.

• Display the character string '1999-12-01 11:00:00 -
8:00' as a TIMESTAMP WITH TIME ZONE value.

SELECT TO_TIMESTAMP ('2000-12-01 11:00:00',
'YYYY-MM-DD HH:MI:SS')

FROM DUAL;

Copyright © 2004, Oracle. All rights reserved.

Time Interval Conversion with
TO_YMINTERVAL

Display a date that is one year, two months after the
hire date for the employees working in the department
with the DEPARTMENT_ID 20.
SELECT hire_date,

hire_date + TO_YMINTERVAL('01-02') AS
HIRE_DATE_YMININTERVAL

FROM employees
WHERE department_id = 20;

Copyright © 2004, Oracle. All rights reserved.

Using TO_DSINTERVAL: Example

TO_DSINTERVAL: Converts a character string to an
INTERVAL DAY TO SECOND data type
SELECT last_name,
TO_CHAR(hire_date, 'mm-dd-yy:hh:mi:ss') hire_date,
TO_CHAR(hire_date +
TO_DSINTERVAL('100 10:00:00'),
'mm-dd-yy:hh:mi:ss') hiredate2

FROM employees;

…

Copyright © 2004, Oracle. All rights reserved.

Daylight Saving Time

• First Sunday in April
– Time jumps from 01:59:59 a.m. to 03:00:00 a.m.
– Values from 02:00:00 a.m. to 02:59:59 a.m. are not

valid.
• Last Sunday in October

– Time jumps from 02:00:00 a.m. to 01:00:01 a.m.
– Values from 01:00:01 a.m. to 02:00:00 a.m. are

ambiguous because they are visited twice.

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the
following functions:
• TZ_OFFSET

• FROM_TZ

• TO_TIMESTAMP

• TO_TIMESTAMP_TZ

• TO_YMINTERVAL

• CURRENT_DATE

• CURRENT_TIMESTAMP

• LOCALTIMESTAMP

• DBTIMEZONE

• SESSIONTIMEZONE

• EXTRACT

Copyright © 2004, Oracle. All rights reserved.

Practice 5: Overview

This practice covers using the datetime functions.

Copyright © 2004, Oracle. All rights reserved.

Retrieving Data Using Subqueries

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Write a multiple-column subquery
• Use scalar subqueries in SQL
• Solve problems with correlated subqueries
• Update and delete rows using correlated

subqueries
• Use the EXISTS and NOT EXISTS operators
• Use the WITH clause

Copyright © 2004, Oracle. All rights reserved.

Multiple-Column Subqueries

Main query
WHERE (MANAGER_ID, DEPARTMENT_ID) IN

Subquery
100 90
102 60
124 50

Each row of the main query is compared to values
from a multiple-row and multiple-column subquery.

Copyright © 2004, Oracle. All rights reserved.

Column Comparisons

Column comparisons in a multiple-column subquery
can be:
• Pairwise comparisons
• Nonpairwise comparisons

Copyright © 2004, Oracle. All rights reserved.

Pairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager and work in the same
department as the employees with EMPLOYEE_ID 199
or 174.

SELECT employee_id, manager_id, department_id
FROM employees
WHERE (manager_id, department_id) IN

(SELECT manager_id, department_id
FROM employees
WHERE employee_id IN (199,174))

AND employee_id NOT IN (199,174);

Copyright © 2004, Oracle. All rights reserved.

Nonpairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager as the employees with
EMPLOYEE_ID 174 or 199 and work in the same
department as the employees with EMPLOYEE_ID 174
or 199.
SELECT employee_id, manager_id, department_id
FROM employees
WHERE manager_id IN

(SELECT manager_id
FROM employees
WHERE employee_id IN (174,199))

AND department_id IN
(SELECT department_id
FROM employees
WHERE employee_id IN (174,199))

AND employee_id NOT IN(174,199);

Copyright © 2004, Oracle. All rights reserved.

Scalar Subquery Expressions

• A scalar subquery expression is a subquery that
returns exactly one column value from one row.

• Scalar subqueries can be used in:
– Condition and expression part of DECODE and CASE
– All clauses of SELECT except GROUP BY

Copyright © 2004, Oracle. All rights reserved.

Scalar Subqueries: Examples

• Scalar subqueries in CASE expressions
SELECT employee_id, last_name,

(CASE

WHEN department_id =

(SELECT department_id

FROM departments

WHERE location_id = 1800)

THEN 'Canada' ELSE 'USA' END) location

FROM employees;

SELECT employee_id, last_name

FROM employees e

ORDER BY (SELECT department_name

FROM departments d

WHERE e.department_id = d.department_id);

20

• Scalar subqueries in ORDER BY clause

Copyright © 2004, Oracle. All rights reserved.

Correlated Subqueries

Correlated subqueries are used for row-by-row
processing. Each subquery is executed once for every
row of the outer query.

GET
candidate row from outer query

EXECUTE
inner query using candidate row value

USE
values from inner query to qualify or

disqualify candidate row

Copyright © 2004, Oracle. All rights reserved.

Correlated Subqueries

The subquery references a column from a table in the
parent query.
SELECT column1, column2, ...
FROM table1
WHERE column1 operator

(SELECT column1, column2
FROM table2
WHERE expr1 =

.expr2);

outer

outer

Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, department_id
FROM employees outer
WHERE salary >

(SELECT AVG(salary)
FROM employees
WHERE department_id =
outer.department_id);

Using Correlated Subqueries

Find all employees who earn more than the average
salary in their department.

Each time a row from
the outer query
is processed, the
inner query is
evaluated.

Copyright © 2004, Oracle. All rights reserved.

Using Correlated Subqueries

Display details of those employees who have changed
jobs at least twice.
SELECT e.employee_id, last_name,e.job_id

FROM employees e

WHERE 2 <= (SELECT COUNT(*)

FROM job_history

WHERE employee_id = e.employee_id);

Copyright © 2004, Oracle. All rights reserved.

Using the EXISTS Operator

• The EXISTS operator tests for existence of rows in
the results set of the subquery.

• If a subquery row value is found:
– The search does not continue in the inner query
– The condition is flagged TRUE

• If a subquery row value is not found:
– The condition is flagged FALSE
– The search continues in the inner query

Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, department_id
FROM employees outer
WHERE EXISTS (SELECT 'X'

FROM employees
WHERE manager_id =

outer.employee_id);

Find Employees Who Have at Least One
Person Reporting to Them

Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, department_name
FROM departments d
WHERE NOT EXISTS (SELECT 'X'

FROM employees
WHERE department_id = d.department_id);

Find All Departments That Do Not Have
Any Employees

…

Copyright © 2004, Oracle. All rights reserved.

Correlated UPDATE

Use a correlated subquery to update rows in one table
based on rows from another table.
UPDATE table1 alias1
SET column = (SELECT expression

FROM table2 alias2
WHERE alias1.column =

alias2.column);

Copyright © 2004, Oracle. All rights reserved.

Using Correlated UPDATE

• Denormalize the EMPL6 table by adding a column
to store the department name.

• Populate the table by using a correlated update.
ALTER TABLE empl6
ADD(department_name VARCHAR2(25));

UPDATE empl6 e
SET department_name =

(SELECT department_name
FROM departments d
WHERE e.department_id = d.department_id);

Copyright © 2004, Oracle. All rights reserved.

DELETE FROM table1 alias1
WHERE column operator

(SELECT expression
FROM table2 alias2
WHERE alias1.column = alias2.column);

Correlated DELETE

Use a correlated subquery to delete rows in one table
based on rows from another table.

Copyright © 2004, Oracle. All rights reserved.

DELETE FROM empl6 E
WHERE employee_id =

(SELECT employee_id
FROM emp_history
WHERE employee_id = E.employee_id);

Using Correlated DELETE

Use a correlated subquery to delete only those rows
from the EMPL6 table that also exist in the
EMP_HISTORY table.

Copyright © 2004, Oracle. All rights reserved.

The WITH Clause

• Using the WITH clause, you can use the same
query block in a SELECT statement when it occurs
more than once within a complex query.

• The WITH clause retrieves the results of a query
block and stores it in the user’s temporary
tablespace.

• The WITH clause improves performance.

Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

Using the WITH clause, write a query to display the
department name and total salaries for those
departments whose total salary is greater than the
average salary across departments.

Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

WITH
dept_costs AS (

SELECT d.department_name, SUM(e.salary) AS dept_total
FROM employees e JOIN departments d
ON e.department_id = d.department_id
GROUP BY d.department_name),

avg_cost AS (
SELECT SUM(dept_total)/COUNT(*) AS dept_avg
FROM dept_costs)

SELECT *
FROM dept_costs
WHERE dept_total >

(SELECT dept_avg
FROM avg_cost)

ORDER BY department_name;

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
• A multiple-column subquery returns more than

one column.
• Multiple-column comparisons can be pairwise or

nonpairwise.
• A multiple-column subquery can also be used in

the FROM clause of a SELECT statement.

Copyright © 2004, Oracle. All rights reserved.

Summary

• Correlated subqueries are useful whenever a
subquery must return a different result for each
candidate row.

• The EXISTS operator is a Boolean operator that
tests the presence of a value.

• Correlated subqueries can be used with SELECT,
UPDATE, and DELETE statements.

• You can use the WITH clause to use the same
query block in a SELECT statement when it occurs
more than once.

Copyright © 2004, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
• Creating multiple-column subqueries
• Writing correlated subqueries
• Using the EXISTS operator
• Using scalar subqueries
• Using the WITH clause

Copyright © 2004, Oracle. All rights reserved.

Hierarchical Retrieval

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Interpret the concept of a hierarchical query
• Create a tree-structured report
• Format hierarchical data
• Exclude branches from the tree structure

Copyright © 2004, Oracle. All rights reserved.

Sample Data from the EMPLOYEES Table

…

Copyright © 2004, Oracle. All rights reserved.

Natural Tree Structure

De Haan

King

Hunold

EMPLOYEE_ID = 100 (Parent)

MANAGER_ID = 100 (Child)

Whalen

Kochhar

Higgins

Mourgos Zlotkey

Rajs Davies Matos

Gietz Ernst Lorentz

Hartstein

Fay

Abel Taylor Grant

Vargas

Copyright © 2004, Oracle. All rights reserved.

Hierarchical Queries

WHERE condition:
expr comparison_operator expr

SELECT [LEVEL], column, expr...
FROM table
[WHERE condition(s)]
[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)] ;

Copyright © 2004, Oracle. All rights reserved.

Walking the Tree

• Specifies the condition that must be met
• Accepts any valid condition

Using the EMPLOYEES table, start with the employee
whose last name is Kochhar.

Starting Point

...START WITH last_name = 'Kochhar'

START WITH column1 = value

Copyright © 2004, Oracle. All rights reserved.

Walking the Tree

Walk from the top down, using the EMPLOYEES table.

Direction

Top down Column1 = Parent Key
Column2 = Child Key

Bottom up Column1 = Child Key
Column2 = Parent Key

CONNECT BY PRIOR column1 = column2

... CONNECT BY PRIOR employee_id = manager_id

Copyright © 2004, Oracle. All rights reserved.

Walking the Tree: From the Bottom Up

SELECT employee_id, last_name, job_id, manager_id
FROM employees
START WITH employee_id = 101
CONNECT BY PRIOR manager_id = employee_id ;

Copyright © 2004, Oracle. All rights reserved.

Walking the Tree: From the Top Down

SELECT last_name||' reports to '||
PRIOR last_name "Walk Top Down"
FROM employees

START WITH last_name = 'King'
CONNECT BY PRIOR employee_id = manager_id ;

…

Copyright © 2004, Oracle. All rights reserved.

Ranking Rows with the LEVEL
Pseudocolumn

Level 1
root/parent

Level 3
parent/child /leaf

Level 4
leaf

De Haan

King

HunoldWhalen

Kochhar

Higgins

Mourgos Zlotkey

Rajs Davies Matos

Gietz Ernst Lorentz

Hartstein

Fay

Abel Taylor Grant

Vargas

Copyright © 2004, Oracle. All rights reserved.

Formatting Hierarchical Reports Using
LEVEL and LPAD

Create a report displaying company management
levels, beginning with the highest level and indenting
each of the following levels.

COLUMN org_chart FORMAT A12

SELECT LPAD(last_name, LENGTH(last_name)+(LEVEL*2)-2,'_')

AS org_chart
FROM employees
START WITH last_name='King'
CONNECT BY PRIOR employee_id=manager_id

Copyright © 2004, Oracle. All rights reserved.

Pruning Branches

Use the WHERE clause
to eliminate a node.

Use the CONNECT BY clause
to eliminate a branch.

WHERE last_name != 'Higgins'CONNECT BY PRIOR
employee_id = manager_id
AND last_name != 'Higgins'

Kochhar

Higgins

Gietz

Whalen

Kochhar

HigginsWhalen

Gietz

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
• You can use hierarchical queries to view a

hierarchical relationship between rows in a table.
• You specify the direction and starting point of the

query.
• You can eliminate nodes or branches by pruning.

Copyright © 2004, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:
• Distinguishing hierarchical queries from

nonhierarchical queries
• Walking through a tree
• Producing an indented report by using the LEVEL

pseudocolumn
• Pruning the tree structure
• Sorting the output

Copyright © 2004, Oracle. All rights reserved.

Regular Expression Support

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
use regular expression support in SQL to search,
match, and replace strings all in terms of regular
expressions.

Copyright © 2004, Oracle. All rights reserved.

Regular Expression Overview

ABC

A method of
describing both

simple and complex
patterns for

searching and
manipulating

Several new
functions to

support regular
expressions

A multilingual
regular expression

support for SQL
and PLSQL string

types

Copyright © 2004, Oracle. All rights reserved.

Meta Characters

Specifies equivalence classes[==]

Matches one or more occurrence+
Matches zero or one occurrence?
Matches any character in the supported character set, except NULL.
Grouping expression, treated as a single subexpression()

Back-reference expression\n

Specifies a character class and matches any character in that class[: :]
Can have 4 different meanings: 1. Stand for itself. 2. Quote the next
character. 3. Introduce an operator. 4. Do nothing.

\

DescriptionSymbol

Specifies one collation element, such as a multicharacter element

Matches at least m times but no more than n times
Matches exactly m times

Bracket expression for a matching list matching any one of the
expressions represented in the list

Matches the start-of-line/end-of-line
Alteration operator for specifying alternative matches
Matches zero or more occurrences

[..]

{m,n}
{m}

[]
^/$
|
*

Copyright © 2004, Oracle. All rights reserved.

Using Meta Characters
Problem: Find 'abc' within a string:
Solution: 'abc'
Matches: abc
Does not match: 'def'

Problem: To find 'a' followed by any character, followed
by 'c'

Meta Character: any character is defined by '.'
Solution: 'a.c'
Matches: abc
Matches: adc
Matches: alc
Matches: a&c
Does not match: abb

Problem: To find one or more occurrences of 'a'
Meta Character: Use'+' sign to match one or more of the
previous characters
Solution: 'a+'
Matches: a
Matches: aa
Does not match: bbb

1

2

3

Copyright © 2004, Oracle. All rights reserved.

Regular Expression Functions

Searches for a given string for a regular
expression pattern and returns the
position where the match is found

REGEXP_INSTR

Searches for a regular expression pattern
within a given string and returns the
matched substring

REGEXP_SUBSTR

Searches for a regular expression pattern
and replaces it with a replacement string

REGEXP_REPLACE

Similar to the LIKE operator, but performs
regular expression matching instead of
simple pattern matching

REGEXP_LIKE

DescriptionFunction Name

Copyright © 2004, Oracle. All rights reserved.

The REGEXP Function Syntax

REGEXP_LIKE (srcstr, pattern [,match_option])

REGEXP_INSTR (srcstr, pattern [, position [, occurrence
[, return_option [, match_option]]]])

REGEXP_SUBSTR (srcstr, pattern [, position
[, occurrence [, match_option]]])

REGEXP_REPLACE(srcstr, pattern [,replacestr [, position
[, occurrence [, match_option]]]])

Copyright © 2004, Oracle. All rights reserved.

SELECT first_name, last_name

FROM employees

WHERE REGEXP_LIKE (first_name, '^Ste(v|ph)en$');

Performing Basic Searches

Copyright © 2004, Oracle. All rights reserved.

SELECT street_address,
REGEXP_INSTR(street_address,'[^[:alpha:]]')

FROM locations
WHERE

REGEXP_INSTR(street_address,'[^[:alpha:]]')> 1;

Checking the Presence of a Pattern

Copyright © 2004, Oracle. All rights reserved.

SELECT REGEXP_SUBSTR(street_address , ' [^]+ ')
"Road" FROM locations;

Example of Extracting Substrings

…

Copyright © 2004, Oracle. All rights reserved.

SELECT REGEXP_REPLACE(country_name, '(.)',
'\1 ') "REGEXP_REPLACE"

FROM countries;

Replacing Patterns

…

Copyright © 2004, Oracle. All rights reserved.

Regular Expressions and
Check Constraints

ALTER TABLE emp8
ADD CONSTRAINT email_addr
CHECK(REGEXP_LIKE(email,'@'))NOVALIDATE ;

INSERT INTO emp8 VALUES
(500,'Christian','Patel',
'ChrisP2creme.com', 1234567890,
'12-Jan-2004', 'HR_REP', 2000, null, 102, 40) ;

1

2

Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use
regular expression support in SQL and PL/SQL to
search, match, and replace strings all in terms of
regular expressions.

Copyright © 2004, Oracle. All rights reserved.

Practice 8: Overview

This practice covers using regular expressions.

Copyright © 2004, Oracle. All rights reserved.

Writing Advanced Scripts

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:
• Describe the type of problems that are solved by

using SQL to generate SQL
• Write a script that generates a script of DROP

TABLE statements
• Write a script that generates a script of INSERT

INTO statements

Copyright © 2004, Oracle. All rights reserved.

Using SQL to Generate SQL

• SQL can be used to generate scripts in SQL
• The data dictionary:

– Is a collection of tables and views that contain
database information

– Is created and maintained by the Oracle server

SQL script

SQL Data dictionary

Copyright © 2004, Oracle. All rights reserved.

Creating a Basic Script

SELECT 'CREATE TABLE ' || table_name ||
'_test ' || 'AS SELECT * FROM '
|| table_name ||' WHERE 1=2;'
AS "Create Table Script"

FROM user_tables;

Copyright © 2004, Oracle. All rights reserved.

SPOOL dropem.sql

SPOOL OFF

Controlling the Environment

Set system variables
to appropriate values.

Set system variables
back to the default
value.

SQL STATEMENT

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE 0

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

Copyright © 2004, Oracle. All rights reserved.

The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE 0

SELECT 'DROP TABLE ' || object_name || ';'
FROM user_objects
WHERE object_type = 'TABLE'
/

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

Copyright © 2004, Oracle. All rights reserved.

Dumping the Contents of a Table to a File

SET HEADING OFF ECHO OFF FEEDBACK OFF
SET PAGESIZE 0

SELECT
'INSERT INTO departments_test VALUES
(' || department_id || ', ''' || department_name ||
''', ''' || location_id || ''');'
AS "Insert Statements Script"

FROM departments
/

SET PAGESIZE 24
SET HEADING ON ECHO ON FEEDBACK ON

Copyright © 2004, Oracle. All rights reserved.

Dumping the Contents of a Table to a File

Source

'''X'''

''''

''''||department_name||''''

''', '''

''');'

Result

'X'

'

'Administration'

','

');

Copyright © 2004, Oracle. All rights reserved.

Generating a Dynamic Predicate

COLUMN my_col NEW_VALUE dyn_where_clause

SELECT DECODE('&&deptno', null,
DECODE ('&&hiredate', null, ' ',
'WHERE hire_date=TO_DATE('''||'&&hiredate'',''DD-MON-YYYY'')'),
DECODE ('&&hiredate', null,
'WHERE department_id = ' || '&&deptno',
'WHERE department_id = ' || '&&deptno' ||
' AND hire_date = TO_DATE('''||'&&hiredate'',''DD-MON-YYYY'')'))
AS my_col FROM dual;

SELECT last_name FROM employees &dyn_where_clause;

Copyright © 2004, Oracle. All rights reserved.

Summary

In this appendix, you should have learned the
following:
• You can write a SQL script to generate another

SQL script.
• Script files often use the data dictionary.
• You can capture the output in a file.

Copyright © 2004, Oracle. All rights reserved.

Oracle Architectural Components

Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:
• Describe the Oracle server architecture and its

main components
• List the structures involved in connecting a user

to an Oracle instance
• List the stages in processing:

– Queries
– DML statements
– Commits

Copyright © 2004, Oracle. All rights reserved.

Oracle Database Architecture: Overview

The Oracle database consists of two main
components:
• The database or the physical structures
• The instance or the memory structures

Copyright © 2004, Oracle. All rights reserved.

Database Physical Architecture

Data files Online redo log files

Password fileParameter file

Control files

Archive log files

Copyright © 2004, Oracle. All rights reserved.

Control Files

• Contains physical database structure information
• Multiplexed to protect against loss
• Read at mount stage

Control files

Copyright © 2004, Oracle. All rights reserved.

Redo Log Files

• Record changes to the database
• Multiplexed to protect against loss

Redo log
buffer

Log
Writer
LGWR

Group 1 Group 2 Group 3

Copyright © 2004, Oracle. All rights reserved.

Tablespaces and Data Files

• Tablespaces consist of one or more data files.
• Data files belong to only one tablespace.

USERS tablespace

Data file 1 Data file 2

Copyright © 2004, Oracle. All rights reserved.

Segments, Extents, and Blocks

• Segments exist within a tablespace.
• Segments consist of a collection of extents.
• Extents are a collection of data blocks.
• Data blocks are mapped to OS blocks.

Segment Extents Data
blocks

OS
blocks

Copyright © 2004, Oracle. All rights reserved.

Oracle Instance Management

System
Monitor
SMON

Database
Writer
DBW0

Log
Writer
LGWR

Process
Monitor
PMON

Archiver
ARC0

SGA

Java pool

Shared pool Large poolStreams pool

Database
buffer cache

Redo log
buffer

Check
point
CKPT

Copyright © 2004, Oracle. All rights reserved.

Oracle Memory Structures

Java pool Database
buffer cache

Redo log
buffer

Shared pool Large pool

SGA

Streams pool

Server
process

1
PGA

Server
process

2
PGA

Back-
ground
process

PGA

Copyright © 2004, Oracle. All rights reserved.

Oracle Processes

System
monitor
SMON

Database
writer
DBW0

Check
point
CKPT

Log
writer
LGWR

Process
monitor
PMON

Archiver
ARC0

Server
process

Server
process

Server
process

Server
process

System Global Area
SGA

Background processes

Copyright © 2004, Oracle. All rights reserved.

Other Key Physical Structures

Archived
log files

Parameter
file

Password
file Database

Copyright © 2004, Oracle. All rights reserved.

Processing a SQL Statement

• Connect to an instance using:
– The user process
– The server process

• The Oracle server components that are used
depend on the type of SQL statement:
– Queries return rows
– DML statements log changes
– Commit ensures transaction recovery

• Some Oracle server components do not
participate in SQL statement processing.

Copyright © 2004, Oracle. All rights reserved.

Connecting to an Instance

User Server

ServerUser

Client

User Server

Oracle server

ServerApplication server

Browser

Copyright © 2004, Oracle. All rights reserved.

Processing a Query

• Parse:
– Search for identical statement
– Check syntax, object names, and privileges
– Lock objects used during parse
– Create and store execution plan

• Execute: Identify rows selected
• Fetch: Return rows to user process

Copyright © 2004, Oracle. All rights reserved.

The Shared Pool

• The library cache contains the SQL statement text,
parsed code, and execution plan.

• The data dictionary cache contains table, column,
and other object definitions and privileges.

• The shared pool is sized by SHARED_POOL_SIZE.

Data dictionary
cache

Library
cache

Shared pool

Copyright © 2004, Oracle. All rights reserved.

Database Buffer Cache

• Stores the most recently used blocks
• Size of a buffer based on DB_BLOCK_SIZE
• Number of buffers defined by DB_BLOCK_BUFFERS

Database buffer
cache

Copyright © 2004, Oracle. All rights reserved.

Program Global Area (PGA)

• Not shared
• Writable only by the server process
• Contains:

– Sort area
– Session information
– Cursor state
– Stack space

Server
process

PGA

Copyright © 2004, Oracle. All rights reserved.

Processing a DML Statement

UPDATE

employees ...

SGA

Redo log
buffer

Database
buffer
cache

Shared poolUser
process

Server
process

Database

Data
files

Control
files

Redo
log files

1

1 2 34

Copyright © 2004, Oracle. All rights reserved.

Redo Log Buffer

• Has its size defined by LOG_BUFFER
• Records changes made through the instance
• Is used sequentially
• Is a circular buffer

Database buffer
cache

Copyright © 2004, Oracle. All rights reserved.

Rollback Segment

DML statement

Old image

New image
Rollback segment

Table

Copyright © 2004, Oracle. All rights reserved.

COMMIT Processing

1

3
4

Instance

SGA

Redo log
buffer

Database
buffer
cache

Shared pool

LGWR

2User
process

Server
process

Database

Data
files

Control
files

Redo
log files

Copyright © 2004, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to:
• Identify database files: data files, control files, and

online redo logs
• Describe SGA memory structures: DB buffer

cache, shared SQL pool, and redo log buffer
• Explain primary background processes:

DBW0, LGWR, CKPT, PMON, SMON, and ARC0
• List SQL processing steps: parse, execute, fetch

