
Oracle Database 10g: SQL
Fundamentals II

Student Guide • Volume 1

D17111GC11

Edition 1.1

August 2004

Applied

Copyright © 2004, Oracle. All rights reserved.

Introduction

Oracle Database 10g: SQL Fundamentals II I-2

I-2 Copyright © 2004, Oracle. All rights reserved.

Course Overview

In this course, you will use advanced SQL data
retrieval techniques such as:
• Datetime functions
• ROLLUP, CUBE operators, and GROUPING SETS

• Hierarchical queries
• Correlated subqueries
• Multitable inserts
• Merge operation
• External tables
• Regular expression usage

Oracle Database 10g: SQL Fundamentals II I-3

I-3 Copyright © 2004, Oracle. All rights reserved.

Course Application

EMPLOYEES DEPARTMENTS

COUNTRIESREGIONS

LOCATIONS

Tables Used in the Course
The following tables are used in this course:
EMPLOYEES: The EMPLOYEES table contains information about all the employees such as
their first and last names, job IDs, salaries, hire dates, department IDs, and manager IDs.
This table is a child of the DEPARTMENTS table.
DEPARTMENTS: The DEPARTMENTS table contains information such as the department
ID, department name, manager ID, and location ID. This table is the primary key table to the
EMPLOYEES table.
LOCATIONS: This table contains department location information. It contains location ID,
street address, city, state province, postal code, and country ID information. It is the primary
key table to DEPARTMENTS table and is a child of the COUNTRIES table.
COUNTRIES: This table contains the country names, country IDs, and region IDs. It is a
child of the REGIONS table. This table is the primary key table to the LOCATIONS table.
REGIONS: This table contains region IDs and region names of the various countries. It is a
primary key table to the COUNTRIES table.

Oracle Database 10g: SQL Fundamentals II I-4

I-4 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
• The course objectives
• The sample tables used in the course

Copyright © 2004, Oracle. All rights reserved.

Controlling User Access

Oracle Database 10g: SQL Fundamentals II 1-2

1-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Differentiate system privileges from object

privileges
• Grant privileges on tables
• View privileges in the data dictionary
• Grant roles
• Distinguish between privileges and roles

Objectives
In this lesson, you learn how to control database access to specific objects and add new users
with different levels of access privileges.

Oracle Database 10g: SQL Fundamentals II 1-3

1-3 Copyright © 2004, Oracle. All rights reserved.

Controlling User Access

Database
administrator

Users

Username and password
Privileges

Controlling User Access
In a multiple-user environment, you want to maintain security of the database access and use.
With Oracle server database security, you can do the following:

• Control database access
• Give access to specific objects in the database
• Confirm given and received privileges with the Oracle data dictionary
• Create synonyms for database objects

Database security can be classified into two categories: system security and data security.
System security covers access and use of the database at the system level such as the username
and password, the disk space allocated to users, and the system operations that users can
perform. Database security covers access and use of the database objects and the actions that
those users can have on the objects.

Oracle Database 10g: SQL Fundamentals II 1-4

1-4 Copyright © 2004, Oracle. All rights reserved.

Privileges

• Database security:
– System security
– Data security

• System privileges: Gaining access to the database
• Object privileges: Manipulating the content of the

database objects
• Schemas: Collection of objects such as tables,

views, and sequences

Privileges
Privileges are the right to execute particular SQL statements. The database administrator (DBA)
is a high-level user with the ability to create users and grant users access to the database and its
objects. Users require system privileges to gain access to the database and object privileges to
manipulate the content of the objects in the database. Users can also be given the privilege to
grant additional privileges to other users or to roles, which are named groups of related
privileges.
Schemas
A schema is a collection of objects such as tables, views, and sequences. The schema is owned
by a database user and has the same name as that user.
For more information, see the Oracle Database10g Application Developer’s Guide –
Fundamentals reference manual.

Oracle Database 10g: SQL Fundamentals II 1-5

1-5 Copyright © 2004, Oracle. All rights reserved.

System Privileges

• More than 100 privileges are available.
• The database administrator has high-level system

privileges for tasks such as:
– Creating new users
– Removing users
– Removing tables
– Backing up tables

System Privileges
More than 100 distinct system privileges are available for users and roles. System privileges
typically are provided by the database administrator.
Typical DBA Privileges

System Privilege Operations Authorized
CREATE USER Grantee can create other Oracle users.

DROP USER Grantee can drop another user.
DROP ANY TABLE Grantee can drop a table in any schema.
BACKUP ANY TABLE Grantee can back up any table in any schema with the export

utility.
SELECT ANY TABLE Grantee can query tables, views, or materialized views in any

schema.
CREATE ANY TABLE Grantee can create tables in any schema.

Oracle Database 10g: SQL Fundamentals II 1-6

1-6 Copyright © 2004, Oracle. All rights reserved.

Creating Users

The DBA creates users with the CREATE USER statement.

CREATE USER HR
IDENTIFIED BY HR;
User created.

CREATE USER user
IDENTIFIED BY password;

Creating a User
The DBA creates the user by executing the CREATE USER statement. The user does not have
any privileges at this point. The DBA can then grant privileges to that user. These privileges
determine what the user can do at the database level.
The slide gives the abridged syntax for creating a user.
In the syntax:
user is the name of the user to be created
Password specifies that the user must log in with this password

For more information, see Oracle Database10g SQL Reference, “GRANT” and “CREATE
USER.”

Oracle Database 10g: SQL Fundamentals II 1-7

1-7 Copyright © 2004, Oracle. All rights reserved.

User System Privileges

• After a user is created, the DBA can grant specific
system privileges to that user.

• An application developer, for example, may have
the following system privileges:
– CREATE SESSION
– CREATE TABLE
– CREATE SEQUENCE
– CREATE VIEW
– CREATE PROCEDURE

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

Typical User Privileges
After the DBA creates a user, the DBA can assign privileges to that user.

In the syntax:
privilege is the system privilege to be granted
user |role|PUBLIC is the name of the user, the name of the role, or PUBLIC

designates that every user is granted the privilege
Note: Current system privileges can be found in the SESSION_PRIVS dictionary view.

System Privilege Operations Authorized
CREATE SESSION Connect to the database
CREATE TABLE Create tables in the user’s schema
CREATE SEQUENCE Create a sequence in the user’s schema
CREATE VIEW Create a view in the user’s schema
CREATE PROCEDURE Create a stored procedure, function, or package in the user’s

schema

Oracle Database 10g: SQL Fundamentals II 1-8

1-8 Copyright © 2004, Oracle. All rights reserved.

Granting System Privileges

The DBA can grant specific system privileges to a
user.

GRANT create session, create table,
create sequence, create view

TO scott;
Grant succeeded.

Granting System Privileges
The DBA uses the GRANT statement to allocate system privileges to the user. After the user has
been granted the privileges, the user can immediately use those privileges.
In the example on the slide, user Scott has been assigned the privileges to create sessions, tables,
sequences, and views.

Oracle Database 10g: SQL Fundamentals II 1-9

1-9 Copyright © 2004, Oracle. All rights reserved.

What Is a Role?

Allocating privileges
without a role

Allocating privileges
with a role

Privileges

Users

Manager

What Is a Role?
A role is a named group of related privileges that can be granted to the user. This method makes
it easier to revoke and maintain privileges.
A user can have access to several roles, and several users can be assigned the same role. Roles
are typically created for a database application.

Creating and Assigning a Role
First, the DBA must create the role. Then the DBA can assign privileges to the role and assign
the role to users.
Syntax

CREATE ROLE role;

In the syntax:
role is the name of the role to be created

After the role is created, the DBA can use the GRANT statement to assign the role to users as
well as assign privileges to the role.

Oracle Database 10g: SQL Fundamentals II 1-10

1-10 Copyright © 2004, Oracle. All rights reserved.

Creating and Granting Privileges to a Role

• Create a role

• Grant privileges to a role

• Grant a role to users

CREATE ROLE manager;
Role created.

GRANT create table, create view
TO manager;
Grant succeeded.

GRANT manager TO DE HAAN, KOCHHAR;
Grant succeeded.

Creating a Role
The example on the slide creates a manager role and then enables managers to create tables and
views. It then grants De Haan and Kochhar the role of managers. Now De Haan and Kochhar can
create tables and views.
If users have multiple roles granted to them, they receive all of the privileges associated with all
of the roles.

Oracle Database 10g: SQL Fundamentals II 1-11

1-11 Copyright © 2004, Oracle. All rights reserved.

Changing Your Password

• The DBA creates your user account and initializes
your password.

• You can change your password by using the
ALTER USER statement.

ALTER USER HR
IDENTIFIED BY employ;
User altered.

Changing Your Password
The DBA creates an account and initializes a password for every user. You can change your
password by using the ALTER USER statement.
Syntax
ALTER USER user IDENTIFIED BY password;

In the syntax:
user is the name of the user
password specifies the new password

Although this statement can be used to change your password, there are many other options. You
must have the ALTER USER privilege to change any other option.
For more information, see the Oracle Database10g SQL Reference manual.
Note: SQL*Plus has a PASSWORD command (PASSW) that can be used to change the password
of a user when the user is logged in. This command is not available in iSQL*Plus.

Oracle Database 10g: SQL Fundamentals II 1-12

1-12 Copyright © 2004, Oracle. All rights reserved.

Object Privileges

Object
Privilege Table View Sequence Procedure

ALTER √ √

DELETE √ √

EXECUTE √

INDEX √

INSERT √ √

REFERENCES √

SELECT √ √ √

UPDATE √ √

Object Privileges
An object privilege is a privilege or right to perform a particular action on a specific table, view,
sequence, or procedure. Each object has a particular set of grantable privileges. The table on the
slide lists the privileges for various objects. Note that the only privileges that apply to a sequence
are SELECT and ALTER. UPDATE, REFERENCES, and INSERT can be restricted by specifying
a subset of updatable columns. A SELECT privilege can be restricted by creating a view with a
subset of columns and granting the SELECT privilege only on the view. A privilege granted on a
synonym is converted to a privilege on the base table referenced by the synonym.

Oracle Database 10g: SQL Fundamentals II 1-13

1-13 Copyright © 2004, Oracle. All rights reserved.

Object Privileges

• Object privileges vary from object to object.
• An owner has all the privileges on the object.
• An owner can give specific privileges on that

owner’s object.
GRANT object_priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION];

Granting Object Privileges
Different object privileges are available for different types of schema objects. A user
automatically has all object privileges for schema objects contained in the user’s schema. A user
can grant any object privilege on any schema object that the user owns to any other user or role.
If the grant includes WITH GRANT OPTION, then the grantee can further grant the object
privilege to other users; otherwise, the grantee can use the privilege but cannot grant it to other
users.
In the syntax:
object_priv is an object privilege to be granted
ALL specifies all object privileges
columns specifies the column from a table or view on which

privileges are granted
ON object is the object on which the privileges are granted
TO identifies to whom the privilege is granted
PUBLIC grants object privileges to all users
WITH GRANT OPTION enables the grantee to grant the object privileges to other

users and roles

Oracle Database 10g: SQL Fundamentals II 1-14

1-14 Copyright © 2004, Oracle. All rights reserved.

Granting Object Privileges

• Grant query privileges on the EMPLOYEES table.

• Grant privileges to update specific columns to
users and roles.

GRANT select
ON employees
TO sue, rich;
Grant succeeded.

GRANT update (department_name, location_id)
ON departments
TO scott, manager;
Grant succeeded.

Guidelines
• To grant privileges on an object, the object must be in your own schema, or you must have

been granted the object privileges WITH GRANT OPTION.
• An object owner can grant any object privilege on the object to any other user or role of the

database.
• The owner of an object automatically acquires all object privileges on that object.

The first example on the slide grants users Sue and Rich the privilege to query your
EMPLOYEES table. The second example grants UPDATE privileges on specific columns in the
DEPARTMENTS table to Scott and to the manager role.
If Sue or Rich now want to use a SELECT statement to obtain data from the EMPLOYEES table,
the syntax they must use is:

SELECT * FROM HR.employees;

Alternatively, they can create a synonym for the table and issue a SELECT statement from the
synonym:

CREATE SYNONYM emp FOR HR.employees;
SELECT * FROM emp;

Note: DBAs generally allocate system privileges; any user who owns an object can grant object
privileges.

Oracle Database 10g: SQL Fundamentals II 1-15

1-15 Copyright © 2004, Oracle. All rights reserved.

Passing On Your Privileges

• Give a user authority to pass along privileges.

• Allow all users on the system to query data from
Alice’s DEPARTMENTS table.

GRANT select, insert
ON departments
TO scott
WITH GRANT OPTION;
Grant succeeded.

GRANT select
ON alice.departments
TO PUBLIC;
Grant succeeded.

WITH GRANT OPTION Keyword
A privilege that is granted with the WITH GRANT OPTION clause can be passed on to other
users and roles by the grantee. Object privileges granted with the WITH GRANT OPTION
clause are revoked when the grantor’s privilege is revoked.
The example on the slide gives user Scott access to your DEPARTMENTS table with the
privileges to query the table and add rows to the table. The example also shows that Scott can
give others these privileges.

PUBLIC Keyword
An owner of a table can grant access to all users by using the PUBLIC keyword.
The second example allows all users on the system to query data from Alice’s DEPARTMENTS
table.

Oracle Database 10g: SQL Fundamentals II 1-16

1-16 Copyright © 2004, Oracle. All rights reserved.

Confirming Privileges Granted

Data Dictionary View Description

ROLE_SYS_PRIVS System privileges granted to roles

ROLE_TAB_PRIVS Table privileges granted to roles

USER_ROLE_PRIVS Roles accessible by the user

USER_TAB_PRIVS_MADE Object privileges granted on the user’s
objects

USER_TAB_PRIVS_RECD Object privileges granted to the user

USER_COL_PRIVS_MADE Object privileges granted on the
columns of the user’s objects

USER_COL_PRIVS_RECD Object privileges granted to the user on
specific columns

USER_SYS_PRIVS System privileges granted to the user

Confirming Granted Privileges
If you attempt to perform an unauthorized operation, such as deleting a row from a table for
which you do not have the DELETE privilege, the Oracle server does not permit the operation to
take place.
If you receive the Oracle server error message “table or view does not exist,” then you have done
either of the following:

• Named a table or view that does not exist
• Attempted to perform an operation on a table or view for which you do not have the

appropriate privilege
You can access the data dictionary to view the privileges that you have. The chart on the slide
describes various data dictionary views.

Oracle Database 10g: SQL Fundamentals II 1-17

1-17 Copyright © 2004, Oracle. All rights reserved.

Revoking Object Privileges

• You use the REVOKE statement to revoke
privileges granted to other users.

• Privileges granted to others through the WITH
GRANT OPTION clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object
FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS];

Revoking Object Privileges
You can remove privileges granted to other users by using the REVOKE statement. When you
use the REVOKE statement, the privileges that you specify are revoked from the users you name
and from any other users to whom those privileges were granted by the revoked user.
In the syntax:
CASCADE is required to remove any referential integrity constraints made to the
CONSTRAINTS object by means of the REFERENCES privilege
For more information, see Oracle Database10g SQL Reference.
Note: If a user were to leave the company and you revoke his privileges, you must re-grant any
privileges that this user may have granted to other users. If you drop the user account without
revoking privileges from it, then the system privileges granted by this user to other users are not
affected by this action.

Oracle Database 10g: SQL Fundamentals II 1-18

1-18 Copyright © 2004, Oracle. All rights reserved.

Revoking Object Privileges

As user Alice, revoke the SELECT and INSERT
privileges given to user Scott on the DEPARTMENTS
table.

REVOKE select, insert
ON departments
FROM scott;
Revoke succeeded.

Revoking Object Privileges (continued)
The example on the slide revokes SELECT and INSERT privileges given to user Scott on the
DEPARTMENTS table.
Note: If a user is granted a privilege with the WITH GRANT OPTION clause, that user can also
grant the privilege with the WITH GRANT OPTION clause, so that a long chain of grantees is
possible, but no circular grants (granting to a grant ancestor) are permitted. If the owner revokes
a privilege from a user who granted the privilege to other users, then the revoking cascades to all
privileges granted.
For example, if user A grants a SELECT privilege on a table to user B including the WITH
GRANT OPTION clause, user B can grant to user C the SELECT privilege with the WITH GRANT
OPTION clause as well, and user C can then grant to user D the SELECT privilege. If user A
revokes privileges from user B, then the privileges granted to users C and D are also revoked.

Oracle Database 10g: SQL Fundamentals II 1-19

1-19 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about
statements that control access to the database and
database objects.

Statement Action

CREATE USER Creates a user (usually performed by a DBA)

GRANT Gives other users privileges to access the
objects

CREATE ROLE Creates a collection of privileges (usually
performed by a DBA)

ALTER USER Changes a user’s password

REVOKE Removes privileges on an object from users

Summary
DBAs establish initial database security for users by assigning privileges to the users.

• The DBA creates users who must have a password. The DBA is also responsible for
establishing the initial system privileges for a user.

• After the user has created an object, the user can pass along any of the available object
privileges to other users or to all users by using the GRANT statement.

• A DBA can create roles by using the CREATE ROLE statement to pass along a collection
of system or object privileges to multiple users. Roles make granting and revoking
privileges easier to maintain.

• Users can change their password by using the ALTER USER statement.
• You can remove privileges from users by using the REVOKE statement.
• With data dictionary views, users can view the privileges granted to them and those that are

granted on their objects.
• With database links, you can access data on remote databases. Privileges cannot be granted

on remote objects.

Oracle Database 10g: SQL Fundamentals II 1-20

1-20 Copyright © 2004, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
• Granting other users privileges to your table
• Modifying another user’s table through the

privileges granted to you
• Creating a synonym
• Querying the data dictionary views related to

privileges

Practice 1: Overview
Team up with other students for this exercise about controlling access to database objects.

Oracle Database 10g: SQL Fundamentals II 1-21

Practice 1
To complete questions 6 and higher, you will need to connect to the database using iSQL*Plus.
To do this, launch the Internet Explorer browser from the desktop of your client. Enter the URL
in the http://machinename:5561/isqlplus/ format and use the oraxx account and the
corresponding password and service identifier (in the Tx format) provided by your instructor to
log on to the database.

1. What privilege should a user be given to log on to the Oracle server? Is this a system or an
object privilege?

2. What privilege should a user be given to create tables?

3. If you create a table, who can pass along privileges to other users on your table?

4. You are the DBA. You are creating many users who require the same system privileges.

What should you use to make your job easier?

5. What command do you use to change your password?

6. Grant another user access to your DEPARTMENTS table. Have the user grant you query
access to his or her DEPARTMENTS table.

7. Query all the rows in your DEPARTMENTS table.

…

Oracle Database 10g: SQL Fundamentals II 1-22

Practice 1 (continued)
8. Add a new row to your DEPARTMENTS table. Team 1 should add Education as department

number 500. Team 2 should add Human Resources as department number 510. Query the
other team’s table.

9. Create a synonym for the other team’s DEPARTMENTS table.
10. Query all the rows in the other team’s DEPARTMENTS table by using your synonym.

Team 1 SELECT statement results:

Team 2 SELECT statement results:

…

…

Oracle Database 10g: SQL Fundamentals II 1-23

Practice 1 (continued)
11. Query the USER_TABLES data dictionary to see information about the tables that you

own.

12. Query the ALL_TABLES data dictionary view to see information about all the tables that
you can access. Exclude tables that you own.
Note: Your list may not exactly match the list shown below.

13. Revoke the SELECT privilege from the other team.

14. Remove the row you inserted into the DEPARTMENTS table in step 8 and save the changes.

…

Copyright © 2004, Oracle. All rights reserved.

Manage Schema Objects

Oracle Database 10g: SQL Fundamentals II 2-2

2-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Add constraints
• Create indexes
• Create indexes using the CREATE TABLE

statement
• Creating function-based indexes
• Drop columns and set column UNUSED
• Perform FLASHBACK operations
• Create and use external tables

Objectives
This lesson contains information about creating indexes and constraints, and altering existing
objects. You also learn about external tables, and the provision to name the index at the time of
creating a primary key constraint.

Oracle Database 10g: SQL Fundamentals II 2-3

2-3 Copyright © 2004, Oracle. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to:
• Add a new column
• Modify an existing column
• Define a default value for the new column
• Drop a column

The ALTER TABLE Statement
After you create a table, you may need to change the table structure because you omitted a
column, your column definition needs to be changed, or you need to remove columns. You can
do this by using the ALTER TABLE statement.

Oracle Database 10g: SQL Fundamentals II 2-4

2-4 Copyright © 2004, Oracle. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or
drop columns.
ALTER TABLE table
ADD (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
DROP (column);

The ALTER TABLE Statement (continued)
You can add columns to a table, modify columns, and drop columns from a table by using the
ALTER TABLE statement.
In the syntax:

table is the name of the table
ADD|MODIFY|DROP is the type of modification
column is the name of the new column
datatype is the data type and length of the new column
DEFAULT expr specifies the default value for a new column

Oracle Database 10g: SQL Fundamentals II 2-5

2-5 Copyright © 2004, Oracle. All rights reserved.

Adding a Column

• You use the ADD clause to add columns.

• The new column becomes the last column.

…

ALTER TABLE dept80
ADD (job_id VARCHAR2(9));
Table altered.

Guidelines for Adding a Column
• You can add or modify columns.
• You cannot specify where the column is to appear. The new column becomes the last

column.
The example on the slide adds a column named JOB_ID to the DEPT80 table. The JOB_ID
column becomes the last column in the table.
Note: If a table already contains rows when a column is added, then the new column is initially
null for all the rows. You cannot add a mandatory NOT NULL column to a table that contains
data in the other columns. You can only add a NOT NULL column to an empty table.

Oracle Database 10g: SQL Fundamentals II 2-6

2-6 Copyright © 2004, Oracle. All rights reserved.

Modifying a Column

• You can change a column’s data type, size, and
default value.

• A change to the default value affects only
subsequent insertions to the table.

ALTER TABLE dept80
MODIFY (last_name VARCHAR2(30));
Table altered.

Modifying a Column
You can modify a column definition by using the ALTER TABLE statement with the MODIFY
clause. Column modification can include changes to a column’s data type, size, and default
value.
Guidelines

• You can increase the width or precision of a numeric column.
• You can increase the width of numeric or character columns.
• You can decrease the width of a column if:

- The column contains only null values
- The table has no rows
- The decrease in column width is not less than the existing values in that column

• You can change the data type if the column contains only null values. The exception to this
is CHAR to VARCHAR2 conversions, which can be done with data in the columns.

• You can convert a CHAR column to the VARCHAR2 data type or convert a VARCHAR2
column to the CHAR data type only if the column contains null values or if you do not
change the size.

• A change to the default value of a column affects only subsequent insertions to the table.

Oracle Database 10g: SQL Fundamentals II 2-7

2-7 Copyright © 2004, Oracle. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns you no
longer need from the table.

ALTER TABLE dept80
DROP COLUMN job_id;
Table altered.

Dropping a Column
You can drop a column from a table by using the ALTER TABLE statement with the DROP
COLUMN clause.
Guidelines

• The column may or may not contain data.
• Using the ALTER TABLE statement, only one column can be dropped at a time.
• The table must have at least one column remaining in it after it is altered.
• After a column is dropped, it cannot be recovered.
• A column cannot be dropped if it is part of a constraint or part of an index key unless the

cascade option is added.
• Dropping a column can take a while if the column has a large number of values. In this

case it may be better to set it to be unused and drop it when the number of users on the
system are fewer to avoid extended locks.

Note: Certain columns can never be dropped such as columns that form part of the partitioning
key of a partitioned table or columns that form part of the primary key of an index-organized
table.

Oracle Database 10g: SQL Fundamentals II 2-8

2-8 Copyright © 2004, Oracle. All rights reserved.

ALTER TABLE <table_name>
SET UNUSED(<column_name>);

ALTER TABLE <table_name>
SET UNUSED COLUMN <column_name>;

The SET UNUSED Option

• You use the SET UNUSED option to mark one or
more columns as unused.

• You use the DROP UNUSED COLUMNS option to
remove the columns that are marked as unused.

OR

ALTER TABLE <table_name>
DROP UNUSED COLUMNS;

The SET UNUSED Option
The SET UNUSED option marks one or more columns as unused so that they can be dropped
when the demand on system resources is lower. Specifying this clause does not actually remove
the target columns from each row in the table (that is, it does not restore the disk space used by
these columns). Therefore, the response time is faster than if you executed the DROP clause.
Unused columns are treated as if they were dropped, even though their column data remains in
the table’s rows. After a column has been marked as unused, you have no access to that column.
A SELECT * query will not retrieve data from unused columns. In addition, the names and
types of columns marked unused will not be displayed during a DESCRIBE statement, and you
can add to the table a new column with the same name as an unused column. SET UNUSED
information is stored in the USER_UNUSED_COL_TABS dictionary view.
Note: The guidelines for setting a column to be UNUSED are similar to those of dropping a
column.

Oracle Database 10g: SQL Fundamentals II 2-9

The DROP UNUSED COLUMNS Option
DROP UNUSED COLUMNS removes from the table all columns currently marked as unused.
You can use this statement when you want to reclaim the extra disk space from unused columns
in the table. If the table contains no unused columns, the statement returns with no errors.

ALTER TABLE dept80
SET UNUSED (last_name);
Table altered.

ALTER TABLE dept80
DROP UNUSED COLUMNS;
Table altered.

Oracle Database 10g: SQL Fundamentals II 2-10

2-10 Copyright © 2004, Oracle. All rights reserved.

Adding a Constraint Syntax

Use the ALTER TABLE statement to:
• Add or drop a constraint, but not modify its

structure
• Enable or disable constraints
• Add a NOT NULL constraint by using the MODIFY

clause

ALTER TABLE <table_name>
ADD [CONSTRAINT <constraint_name>]
type (<column_name>);

Adding a Constraint
You can add a constraint for existing tables by using the ALTER TABLE statement with the
ADD clause.
In the syntax:

table is the name of the table
constraint is the name of the constraint
type is the constraint type
column is the name of the column affected by the constraint

The constraint name syntax is optional, although recommended. If you do not name your
constraints, the system will generate constraint names.
Guidelines

• You can add, drop, enable, or disable a constraint, but you cannot modify its structure.
• You can add a NOT NULL constraint to an existing column by using the MODIFY clause of

the ALTER TABLE statement.
Note: You can define a NOT NULL column only if the table is empty or if the column has a
value for every row.

Oracle Database 10g: SQL Fundamentals II 2-11

2-11 Copyright © 2004, Oracle. All rights reserved.

ALTER TABLE emp2
modify employee_id Primary Key;
Table altered.

Adding a Constraint

Add a FOREIGN KEY constraint to the EMP2 table
indicating that a manager must already exist as a valid
employee in the EMP2 table.

ALTER TABLE emp2
ADD CONSTRAINT emp_mgr_fk
FOREIGN KEY(manager_id)
REFERENCES emp2(employee_id);

Table altered.

Adding a Constraint (continued)
The first example on the slide modifies the EMP2 table to add a PRIMARY KEY constraint on
the EMPLOYEE_ID column. Note that because no constraint name is provided, the constraint is
automatically named by the Oracle server. The second example on the slide creates a FOREIGN
KEY constraint on the EMP2 table. The constraint ensures that a manager exists as a valid
employee in the EMP2 table.

Oracle Database 10g: SQL Fundamentals II 2-12

2-12 Copyright © 2004, Oracle. All rights reserved.

ON DELETE CASCADE

Delete child rows when a parent key is deleted.

ALTER TABLE Emp2 ADD CONSTRAINT emp_dt_fk
FOREIGN KEY (Department_id)
REFERENCES departments ON DELETE CASCADE);
Table altered.

ON DELETE CASCADE

The ON DELETE CASCADE action allows parent key data that is referenced from the child
table to be deleted, but not updated. When data in the parent key is deleted, all rows in the child
table that depend on the deleted parent key values are also deleted. To specify this referential
action, include the ON DELETE CASCADE option in the definition of the FOREIGN KEY
constraint.

Oracle Database 10g: SQL Fundamentals II 2-13

2-13 Copyright © 2004, Oracle. All rights reserved.

Deferring Constraints

Constraints can have the following attributes:
• DEFERRABLE or NOT DEFERRABLE
• INITIALLY DEFERRED or INITIALLY IMMEDIATE

ALTER TABLE dept2
ADD CONSTRAINT dept2_id_pk
PRIMARY KEY (department_id)
DEFERRABLE INITIALLY DEFERRED

ALTER SESSION
SET CONSTRAINTS= IMMEDIATE

SET CONSTRAINTS dept2_id_pk IMMEDIATE

Deferring constraint on
creation

Changing all constraints for a
session

Changing a specific
constraint attribute

Deferring Constraints
You can defer checking constraints for validity until the end of the transaction. A constraint is
deferred if the system checks that it is satisfied only on commit. If a deferred constraint is
violated, then commit causes the transaction to roll back. If a constraint is immediate (not
deferred), then it is checked at the end of each statement. If it is violated, the statement is rolled
back immediately. If a constraint causes an action (for example, DELETE CASCADE), that
action is always taken as part of the statement that caused it, whether the constraint is deferred or
immediate. Use the SET CONSTRAINTS statement to specify, for a particular transaction,
whether a deferrable constraint is checked following each DML statement or when the
transaction is committed. In order to create deferrable constraints, you must create a nonunique
index for that constraint.
You can define constraints as either deferrable or not deferrable, and either initially deferred or
initially immediate. These attributes can be different for each constraint.
Usage scenario: Company policy dictates that department number 40 should be changed to 45.
Changing the DEPARTMENT_ID column affects employees assigned to this department.
Therefore, you make the primary key and foreign keys deferrable and initially deferred. You
update both department and employee information and at the time of commit all rows are
validated.

Oracle Database 10g: SQL Fundamentals II 2-14

2-14 Copyright © 2004, Oracle. All rights reserved.

Dropping a Constraint

• Remove the manager constraint from the EMP2
table.

• Remove the PRIMARY KEY constraint on the
DEPT2 table and drop the associated FOREIGN
KEY constraint on the EMP2.DEPARTMENT_ID
column.

ALTER TABLE emp2
DROP CONSTRAINT emp_mgr_fk;
Table altered.

ALTER TABLE dept2
DROP PRIMARY KEY CASCADE;
Table altered.

Dropping a Constraint
To drop a constraint, you can identify the constraint name from the USER_CONSTRAINTS and
USER_CONS_COLUMNS data dictionary views. Then use the ALTER TABLE statement with
the DROP clause. The CASCADE option of the DROP clause causes any dependent constraints
also to be dropped.
Syntax

ALTER TABLE table
DROP PRIMARY KEY | UNIQUE (column) |

CONSTRAINT constraint [CASCADE];

In the syntax:
table is the name of the table
column is the name of the column affected by the constraint
constraint is the name of the constraint

When you drop an integrity constraint, that constraint is no longer enforced by the Oracle server
and is no longer available in the data dictionary.

Oracle Database 10g: SQL Fundamentals II 2-15

2-15 Copyright © 2004, Oracle. All rights reserved.

Disabling Constraints

• Execute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.

• Apply the CASCADE option to disable dependent
integrity constraints.

ALTER TABLE emp2
DISABLE CONSTRAINT emp_dt_fk;
Table altered.

Disabling a Constraint
You can disable a constraint without dropping it or re-creating it by using the ALTER TABLE
statement with the DISABLE clause.
Syntax
ALTER TABLE table
DISABLE CONSTRAINT constraint [CASCADE];

In the syntax:
table is the name of the table
constraint is the name of the constraint

Guidelines
• You can use the DISABLE clause in both the CREATE TABLE statement and the ALTER

TABLE statement.
• The CASCADE clause disables dependent integrity constraints.
• Disabling a unique or primary key constraint removes the unique index.

Oracle Database 10g: SQL Fundamentals II 2-16

2-16 Copyright © 2004, Oracle. All rights reserved.

Enabling Constraints

• Activate an integrity constraint currently disabled
in the table definition by using the ENABLE clause.

• A UNIQUE index is automatically created if you
enable a UNIQUE key or PRIMARY KEY constraint.

ALTER TABLE emp2
ENABLE CONSTRAINT emp_dt_fk;
Table altered.

Enabling a Constraint
You can enable a constraint without dropping it or re-creating it by using the ALTER TABLE
statement with the ENABLE clause.
Syntax
ALTER TABLE table
ENABLE CONSTRAINT constraint;

In the syntax:
table is the name of the table
constraint is the name of the constraint

Guidelines
• If you enable a constraint, that constraint applies to all the data in the table. All the data in

the table must comply with the constraint.
• If you enable a UNIQUE key or PRIMARY KEY constraint, a UNIQUE or PRIMARY KEY

index is created automatically. If an index already exists, then it can be used by these keys.
• You can use the ENABLE clause in both the CREATE TABLE statement and the ALTER

TABLE statement.

Oracle Database 10g: SQL Fundamentals II 2-17

Enabling a Constraint (continued)
Guidelines (continued)

• Enabling a primary key constraint that was disabled with the CASCADE option does not
enable any foreign keys that are dependent on the primary key.

• To enable a UNIQUE or PRIMARY KEY constraint, you must have the privileges
necessary to create an index on the table.

Oracle Database 10g: SQL Fundamentals II 2-18

2-18 Copyright © 2004, Oracle. All rights reserved.

Cascading Constraints

• The CASCADE CONSTRAINTS clause is used along
with the DROP COLUMN clause.

•• TThe CASCADE CONSTRAINTS clause drops all
referential integrity constraints that refer to the
primary and unique keys defined on the dropped
columns.

• The CASCADE CONSTRAINTS clause also drops all
multicolumn constraints defined on the dropped
columns.

Cascading Constraints
This statement illustrates the usage of the CASCADE CONSTRAINTS clause. Assume that table
TEST1 is created as follows:
CREATE TABLE test1 (

pk NUMBER PRIMARY KEY,
fk NUMBER,
col1 NUMBER,
col2 NUMBER,
CONSTRAINT fk_constraint FOREIGN KEY (fk) REFERENCES test1,
CONSTRAINT ck1 CHECK (pk > 0 and col1 > 0),
CONSTRAINT ck2 CHECK (col2 > 0));

An error is returned for the following statements:
ALTER TABLE test1 DROP (pk); —pk is a parent key.
ALTER TABLE test1 DROP (col1); —col1 is referenced by multicolumn

constraint ck1.

Oracle Database 10g: SQL Fundamentals II 2-19

2-19 Copyright © 2004, Oracle. All rights reserved.

Cascading Constraints

Example:

ALTER TABLE emp2
DROP COLUMN employee_id CASCADE CONSTRAINTS;
Table altered.

ALTER TABLE test1
DROP (pk, fk, col1) CASCADE CONSTRAINTS;
Table altered.

Cascading Constraints (continued)
Submitting the following statement drops column EMPLOYEE_ID, the primary key constraint,
and any foreign key constraints referencing the primary key constraint for the EMP2 table:
ALTER TABLE emp2 DROP COLUMN employee_id CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are also dropped,
then CASCADE CONSTRAINTS is not required. For example, assuming that no other referential
constraints from other tables refer to column PK, it is valid to submit the following statement
without the CASCADE CONSTRAINTS clause for the TEST1 table created in the previous
page:
ALTER TABLE test1 DROP (pk, fk, col1);

Oracle Database 10g: SQL Fundamentals II 2-20

2-20 Copyright © 2004, Oracle. All rights reserved.

Overview of Indexes

Indexes are created:
• Automatically

– PRIMARY KEY creation
– UNIQUE KEY creation

• Manually
– CREATE INDEX statement
– CREATE TABLE statement

Overview of Indexes
Two types of indexes can be created. One type is an unique index. The Oracle server
automatically creates a unique index when you define a column or group of columns in a table to
have a PRIMARY KEY or a UNIQUE key constraint. The name of the index is the name given to
the constraint.
The other type of index is a nonunique index, which a user can create. For example, you can
create an index for a FOREIGN KEY column to be used in joins to improve retrieval speed.
You can create an index on one or more columns by issuing the CREATE INDEX statement.
For more information, see Oracle Database 10g SQL Reference.
Note: You can manually create a unique index, but it is recommended that you create a unique
constraint, which implicitly creates a unique index.

Oracle Database 10g: SQL Fundamentals II 2-21

2-21 Copyright © 2004, Oracle. All rights reserved.

CREATE INDEX with CREATE TABLE
Statement

CREATE TABLE NEW_EMP
(employee_id NUMBER(6)

PRIMARY KEY USING INDEX
(CREATE INDEX emp_id_idx ON
NEW_EMP(employee_id)),

first_name VARCHAR2(20),
last_name VARCHAR2(25));
Table created.

SELECT INDEX_NAME, TABLE_NAME
FROM USER_INDEXES
WHERE TABLE_NAME = 'NEW_EMP';

CREATE INDEX with CREATE TABLE Statement
In the example on the slide, the CREATE INDEX clause is used with the CREATE TABLE
statement to create a primary key index explicitly. You can name your indexes at the time of
primary key creation to be different from the name of the PRIMARY KEY constrain. The
following example illustrates the database behavior if the index is not explicitly named:
CREATE TABLE EMP_UNNAMED_INDEX
(employee_id NUMBER(6) PRIMARY KEY ,
first_name VARCHAR2(20),
last_name VARCHAR2(25));

Table created.

SELECT INDEX_NAME, TABLE_NAME
FROM USER_INDEXES
WHERE TABLE_NAME = 'EMP_UNNAMED_INDEX';

Oracle Database 10g: SQL Fundamentals II 2-22

CREATE INDEX with CREATE TABLE Statement (continued)
Observe that the Oracle server gives a generic name to the index that is created for the
PRIMARY KEY column.
You can also use an existing index for your PRIMARY KEY column, for example when you are
expecting a large data load and want to speed the operation. You may want to disable the
constraints while performing the load and then enable them, in which case having a unique index
on the primary key will still cause the data to be verified during the load. So you can first create
a nonunique index on the column designated as PRIMARY KEY, and then create the PRIMARY
KEY column and specify that it should use the existing index. The following examples illustrate
this process:

Step 1: Create the table

CREATE TABLE NEW_EMP2
(employee_id NUMBER(6)
first_name VARCHAR2(20),
last_name VARCHAR2(25)
);

Step 2: Create the index
CREATE INDEX emp_id_idx2 ON

new_emp2(employee_id);

Step 3: Create the Primary Key
ALTER TABLE new_emp2 ADD PRIMARY KEY (employee_id) USING INDEX

emp_id_idx2;

Oracle Database 10g: SQL Fundamentals II 2-23

2-23 Copyright © 2004, Oracle. All rights reserved.

CREATE INDEX upper_dept_name_idx
ON dept2(UPPER(department_name));

Index created.

SELECT *
FROM dept2
WHERE UPPER(department_name) = 'SALES';

Function-Based Indexes

• A function-based index is based on expressions.
• The index expression is built from table columns,

constants, SQL functions, and user-defined
functions.

Function-Based Indexes
Function-based indexes defined with the UPPER(column_name) or
LOWER(column_name) keywords allow case-insensitive searches. For example, the
following index:
CREATE INDEX upper_last_name_idx ON emp2 (UPPER(last_name));

facilitates processing queries such as:
SELECT * FROM emp2 WHERE UPPER(last_name) = 'KING';

The Oracle server uses the index only when that particular function is used in a query. For
example, the following statement may use the index, but without the WHERE clause the Oracle
server may perform a full table scan:
SELECT *
FROM employees
WHERE UPPER (last_name) IS NOT NULL
ORDER BY UPPER (last_name);

Note: The QUERY_REWRITE_ENABLED initialization parameter must be set to TRUE for a
function-based index to be used.

Oracle Database 10g: SQL Fundamentals II 2-24

Function-Based Indexes (continued)
The Oracle server treats indexes with columns marked DESC as function-based indexes. The
columns marked DESC are sorted in descending order.

Oracle Database 10g: SQL Fundamentals II 2-25

2-25 Copyright © 2004, Oracle. All rights reserved.

Removing an Index

• Remove an index from the data dictionary by
using the DROP INDEX command.

• Remove the UPPER_DEPT_NAME_IDX index from
the data dictionary.

• To drop an index, you must be the owner of the
index or have the DROP ANY INDEX privilege.

DROP INDEX upper_dept_name_idx;
Index dropped.

DROP INDEX index;

Removing an Index
You cannot modify indexes. To change an index, you must drop it and then re-create it. Remove
an index definition from the data dictionary by issuing the DROP INDEX statement. To drop an
index, you must be the owner of the index or have the DROP ANY INDEX privilege.
In the syntax:

index is the name of the index
Note: If you drop a table, indexes and constraints are automatically dropped, but views and
sequences remain.

Oracle Database 10g: SQL Fundamentals II 2-26

2-26 Copyright © 2004, Oracle. All rights reserved.

DROP TABLE … PURGE

DROP TABLE dept80 PURGE;

DROP TABLE …PURGE

Oracle Database 10g introduces a new feature for dropping tables. When you drop a table, the
database does not immediately release the space associated with the table. Rather, the database
renames the table and places it in a recycle bin, where it can later be recovered with the
FLASHBACK TABLE statement if you find that you dropped the table in error. If you want to
immediately release the space associated with the table at the time you issue the DROP TABLE
statement, then include the PURGE clause as shown in the statement on the slide.
Specify PURGE only if you want to drop the table and release the space associated with it in a
single step. If you specify PURGE, then the database does not place the table and its dependent
objects into the recycle bin.
Using this clause is equivalent to first dropping the table and then purging it from the recycle
bin. This clause saves you one step in the process. It also provides enhanced security if you want
to prevent sensitive material from appearing in the recycle bin.
Note: You cannot roll back a DROP TABLE statement with the PURGE clause, nor can you
recover the table if you drop it with the PURGE clause. This feature was not available in earlier
releases.

Oracle Database 10g: SQL Fundamentals II 2-27

2-27 Copyright © 2004, Oracle. All rights reserved.

The FLASHBACK TABLE Statement

• Repair tool for accidental table modifications
– Restores a table to an earlier point in time
– Benefits: Ease of use, availability, fast execution
– Performed in place

• Syntax:

FLASHBACK TABLE[schema.]table[,
[schema.]table]...
TO { TIMESTAMP | SCN } expr
[{ ENABLE | DISABLE } TRIGGERS];

The FLASHBACK TABLE Statement
Self-Service Repair Facility
Oracle Database 10g provides a new SQL DDL command, FLASHBACK TABLE, to restore the
state of a table to an earlier point in time in case it is inadvertently deleted or modified. The
FLASHBACK TABLE command is a self-service repair tool to restore data in a table along with
associated attributes such as indexes or views. This is done while the database is online by
rolling back only the subsequent changes to the given table. Compared to traditional recovery
mechanisms, this feature offers significant benefits such as ease of use, availability, and faster
restoration. It also takes the burden off the DBA to find and restore application-specific
properties. The flashback table feature does not address physical corruption caused because of a
bad disk.
Syntax
You can invoke a flashback table operation on one or more tables, even on tables in different
schemas. You specify the point in time to which you want to revert by providing a valid
timestamp. By default, database triggers are disabled for all tables involved. You can override
this default behavior by specifying the ENABLE TRIGGERS clause.
Note: For more information about recycle bin and flashback semantics, refer to Oracle Database
Administrator’s Reference 10g Release 1 (10.1).

Oracle Database 10g: SQL Fundamentals II 2-28

2-28 Copyright © 2004, Oracle. All rights reserved.

The FLASHBACK TABLE Statement

DROP TABLE emp2;
Table dropped

FLASHBACK TABLE emp2 TO BEFORE DROP;
Flashback complete

…

SELECT original_name, operation, droptime,
FROM recyclebin;

The FLASHBACK TABLE Statement (continued)
Syntax and Examples
The example restores the EMP2 table to a state prior to a DROP statement.
The recycle bin is actually a data dictionary table containing information about dropped objects.
Dropped tables and any associated objects, such as indexes, constraints, nested tables, and so on,
are not removed and still occupy space. They continue to count against user space quotas, until
specifically purged from the recycle bin or the unlikely situation where they must be purged by
the database because of tablespace space constraints.
Each user can be thought of as an owner of a recycle bin because, unless a user has the SYSDBA
privilege, the only objects that the user has access to in the recycle bin are those that the user
owns. A user can view his objects in the recycle bin using the following statement:

SELECT * FROM RECYCLEBIN;

When you drop a user, any objects belonging to that user are not placed in the recycle bin and
any objects in the recycle bin are purged.
You can purge the recycle bin with the following statement:

PURGE RECYCLEBIN;

Oracle Database 10g: SQL Fundamentals II 2-29

2-29 Copyright © 2004, Oracle. All rights reserved.

External Tables

External Tables
An external table is a read-only table whose metadata is stored in the database but whose data is
stored outside the database. This external table definition can be thought of as a view that is used
for running any SQL query against external data without requiring that the external data first be
loaded into the database. The external table data can be queried and joined directly and in
parallel without requiring that the external data first be loaded in the database. You can use SQL,
PL/SQL, and Java to query the data in an external table.
The main difference between external tables and regular tables is that externally organized tables
are read-only. No DML operations are possible, and no indexes can be created on them.
However, you can create an external table, and thus unload data, by using the CREATE TABLE
AS SELECT command.
The Oracle server provides two major access drivers for external tables. One, the loader access
driver (or ORACLE_LOADER), is used for reading of data from external files whose format can
be interpreted by the SQL*Loader utility. Note that not all SQL*Loader functionality is
supported with external tables.

Oracle Database 10g: SQL Fundamentals II 2-30

External Tables (continued)
The ORACLE_DATAPUMP access driver can be used to both import and export data using a
platform-independent format. The ORACLE_DATAPUMP access driver writes rows from a
SELECT statement to be loaded into an external table as part of a CREATE TABLE
...ORGANIZATION EXTERNAL...AS SELECT statement. You can then use SELECT
to read data out of that data file. You can also create an external table definition on another
system and use that data file. This allows data to be moved between Oracle databases.

Oracle Database 10g: SQL Fundamentals II 2-31

2-31 Copyright © 2004, Oracle. All rights reserved.

Creating a Directory for the External Table

Create a DIRECTORY object that corresponds to the
directory on the file system where the external data
source resides.

CREATE OR REPLACE DIRECTORY emp_dir
AS '/…/emp_dir';

GRANT READ ON DIRECTORY emp_dir TO hr;

Example of Creating an External Table
Use the CREATE DIRECTORY statement to create a directory object. A directory object
specifies an alias for a directory on the server’s file system where an external data source resides.
You can use directory names when referring to an external data source, rather than hard code the
operating system path name, for greater file management flexibility.
You must have CREATE ANY DIRECTORY system privileges to create directories. When you
create a directory, you are automatically granted the READ and WRITE object privileges and can
grant READ and WRITE privileges to other users and roles. The DBA can also grant these
privileges to other users and roles.
A user needs READ privileges for all directories used in external tables to be accessed and
WRITE privileges for the log, bad, and discard file locations being used.
In addition, a WRITE privilege is necessary when the external table framework is being used to
unload data.
Oracle also provides the ORACLE_DATAPUMP type, with which you can unload data (that is,
read data from a table in the database and insert it into an external table) and then reload it into
an Oracle database. This is a one-time operation that can be done when the table is created. After
the creation and initial population is done, you cannot update, insert,or delete any rows.

Oracle Database 10g: SQL Fundamentals II 2-32

Example of Creating an External Table (continued)
Syntax
CREATE [OR REPLACE] DIRECTORY AS 'path_name';

In the syntax:
OR REPLACE Specify OR REPLACE to re-create the directory database

object if it already exists. You can use this clause to change
the definition of an existing directory without dropping, re-
creating, and regranting database object privileges previously
granted on the directory. Users who were previously
granted privileges on a redefined directory can continue to
access the directory without requiring that the privileges be
regranted.

directory Specify the name of the directory object to be created. The
maximum length of the directory name is 30 bytes. You
cannot qualify a directory object with a schema name.

'path_name' Specify the full path name of the operating system directory
on the result that the path name is case sensitive.

The syntax for using the ORACLE_DATAPUMP access driver is as follows:
CREATE TABLE extract_emps

ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP
DEFAULT DIRECTORY …
ACCESS PARAMETERS (…)
LOCATION (…)

PARALLEL 4

REJECT LIMIT UNLIMITED
AS

SELECT * FROM …;

Oracle Database 10g: SQL Fundamentals II 2-33

2-33 Copyright © 2004, Oracle. All rights reserved.

Creating an External Table

CREATE TABLE <table_name>
(<col_name> <datatype>, …)

ORGANIZATION EXTERNAL
(TYPE <access_driver_type>
DEFAULT DIRECTORY <directory_name>
ACCESS PARAMETERS
(…))
LOCATION ('<location_specifier>'))

REJECT LIMIT [0 | <number> | UNLIMITED];

Creating an External Table
You create external tables using the ORGANIZATION EXTERNAL clause of the CREATE
TABLE statement. You are not, in fact, creating a table. Rather, you are creating metadata in the
data dictionary that you can use to access external data. You use the ORGANIZATION clause to
specify the order in which the data rows of the table are stored. By specifying EXTERNAL in the
ORGANIZATION clause, you indicate that the table is a read-only table located outside the
database. Note that the external files must already exist outside the database.
TYPE <access_driver_type> indicates the access driver of the external table. The access
driver is the application programming interface (API) that interprets the external data for the
database. If you do not specify TYPE, Oracle uses the default access driver, ORACLE_LOADER.
The other option is the ORACLE_DATAPUMP.
You use the DEFAULT DIRECTORY clause to specify one or more Oracle database directory
objects that correspond to directories on the file system where the external data sources may
reside.
The optional ACCESS PARAMETERS clause enables you to assign values to the parameters of
the specific access driver for this external table.

Oracle Database 10g: SQL Fundamentals II 2-34

Creating an External Table (continued)
Use the LOCATION clause to specify one external locator for each external data source. Usually,
the <location_specifier> is a file, but it need not be.
The REJECT LIMIT clause enables you to specify how many conversion errors can occur
during a query of the external data before an Oracle error is returned and the query is aborted.
The default value is 0.

Oracle Database 10g: SQL Fundamentals II 2-35

2-35 Copyright © 2004, Oracle. All rights reserved.

Creating an External Table Using
ORACLE_LOADER

CREATE TABLE oldemp (
fname char(25), lname CHAR(25))
ORGANIZATION EXTERNAL
(TYPE ORACLE_LOADER
DEFAULT DIRECTORY emp_dir
ACCESS PARAMETERS
(RECORDS DELIMITED BY NEWLINE
NOBADFILE
NOLOGFILE
FIELDS TERMINATED BY ','
(fname POSITION (1:20) CHAR,
lname POSITION (22:41) CHAR))
LOCATION ('emp.dat'))
PARALLEL 5
REJECT LIMIT 200;

Table created.

Example of Creating an External Table Using the ORACLE_LOADER Access Driver
Assume that there is a flat file that has records in the following format:

10,jones,11-Dec-1934

20,smith,12-Jun-1972

Records are delimited by new lines, and the fields are all terminated by a comma (,). The name
of the file is: /emp_dir/emp.dat
To convert this file as the data source for an external table, whose metadata will reside in the
database, you must perform the following steps:

1. Create a directory object emp_dir as follows:
CREATE DIRECTORY emp_dir AS '/emp_dir' ;

2. Run the CREATE TABLE command shown on the slide.
The example on the slide illustrates the table specification to create an external table for the file:

/emp_dir/emp.dat

Oracle Database 10g: SQL Fundamentals II 2-36

Example of Creating an External Table Using the ORACLE_LOADER Access Driver
(continued)

In the example, the TYPE specification is given only to illustrate its use. ORACLE_LOADER is
the default access driver if not specified. The ACCESS PARAMETERS option provides values to
parameters of the specific access driver, which are interpreted by the access driver, not by the
Oracle server.
The PARALLEL clause enables five parallel execution servers to simultaneously scan the
external data sources (files) when executing the INSERT INTO TABLE statement. For example,
if PARALLEL=5 were specified, then more than one parallel execution server can be working on
a data source. Because external tables can be very large, for performance reasons it is advisable
to specify the PARALLEL clause, or a parallel hint for the query.
The REJECT LIMIT clause specifies that if more than 200 conversion errors occur during a
query of the external data, the query is aborted and an error returned. These conversion errors
can arise when the access driver tries to transform the data in the data file to match the external
table definition.
After the CREATE TABLE command executes successfully, the external table OLDEMP can be
described and queried like a relational table.

Oracle Database 10g: SQL Fundamentals II 2-37

2-37 Copyright © 2004, Oracle. All rights reserved.

Querying External Tables

SELECT *
FROM oldemp

emp.dat
OLDEMP

Querying External Tables
An external table does not describe any data that is stored in the database. Nor does it describe
how data is stored in the external source. Instead, it describes how the external table layer must
present the data to the server. It is the responsibility of the access driver and the external table
layer to do the necessary transformations required on the data in the data file so that it matches
the external table definition.
When the database server accesses data in an external source, it calls the appropriate access
driver to get the data from an external source in a form that the database server expects.
It is important to remember that the description of the data in the data source is separate from the
definition of the external table. The source file can contain more or fewer fields than there are
columns in the table. Also, the data types for fields in the data source can be different from the
columns in the table. The access driver takes care of ensuring that the data from the data source
is processed so that it matches the definition of the external table.

Oracle Database 10g: SQL Fundamentals II 2-38

2-38 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Add constraints
• Create indexes
• Create a primary key constraint using an index
• Create indexes using the CREATE TABLE

statement
• Creating function-based indexes
• Drop columns and set column UNUSED
• Perform FLASHBACK operations
• Create and use external tables

Summary
Alter tables to add or modify columns or constraints. Create indexes and function-based indexes
using the CREATE INDEX statement. Drop unused columns. Use FLASHBACK mechanics to
restore tables. Use the external_table clause to create an external table, which is a read-
only table whose metadata is stored in the database but whose data is stored outside the database.
Use external tables to query data without first loading it into the database. Name your PRIMARY
KEY column indexes as you create the table with the CREATE TABLE statement.

Oracle Database 10g: SQL Fundamentals II 2-39

2-39 Copyright © 2004, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
• Altering tables
• Adding columns
• Dropping columns
• Creating indexes
• Creating external tables

Practice 2: Overview
In this practice, you use the ALTER TABLE command to modify columns and add constraints.
You use the CREATE INDEX command to create indexes when creating a table, along with the
CREATE TABLE command. You create external tables. You drop columns and use the
FLASHBACK operation.

Oracle Database 10g: SQL Fundamentals II 2-40

Practice 2
1. Create the DEPT2 table based on the following table instance chart. Place the

syntax in a script called lab_02_01.sql, and then execute the statement in the script to
create the table. Confirm that the table is created.

2. Populate the DEPT2 table with data from the DEPARTMENTS table. Include only the
columns that you need.

3. Create the EMP2 table based on the following table instance chart. Place the syntax in a
script called lab_02_03.sql, and then execute the statement in the script to create the
table. Confirm that the table is created.

Column Name ID NAME

Key Type

Nulls/Unique

FK Table

FK Column

Data type NUMBER VARCHAR2

Length 7 25

Column Name ID LAST_NAME FIRST_NAME DEPT_ID

Key Type

Nulls/Unique

FK Table

FK Column

Data type NUMBER VARCHAR2 VARCHAR2 NUMBER

Length 7 25 25 7

Oracle Database 10g: SQL Fundamentals II 2-41

Practice 2 (continued)
4. Modify the EMP2 table to allow for longer employee last names. Confirm your

modification.

5. Confirm that both the DEPT2 and EMP2 tables are stored in the data dictionary.
(Hint: USER_TABLES)

6. Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include
only the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID
columns. Name the columns in your new table ID, FIRST_NAME, LAST_NAME,
SALARY, and DEPT_ID, respectively.

7. Drop the EMP2 table.
8. Query the recycle bin to see whether the table is present.

9. Undrop the EMP2 table.

10. Drop the FIRST_NAME column from the EMPLOYEES2 table. Confirm your modification
by checking the description of the table.

11. In the EMPLOYEES2 table, mark the DEPT_ID column as UNUSED. Confirm your
modification by checking the description of the table.

12. Drop all the UNUSED columns from the EMPLOYEES2 table. Confirm your modification
by checking the description of the table.

13. Add a table-level PRIMARY KEY constraint to the EMP2 table on the ID column. The
constraint should be named at creation. Name the constraint my_emp_id_pk.

Oracle Database 10g: SQL Fundamentals II 2-42

Practice 2 (continued)
14. Create a PRIMARY KEY constraint to the DEPT2 table using the ID column. The

constraint should be named at creation. Name the constraint my_dept_id_pk.
15. Add a foreign key reference on the EMP2 table that ensures that the employee is not

assigned to a nonexistent department. Name the constraint my_emp_dept_id_fk.
16. Confirm that the constraints were added by querying the USER_CONSTRAINTS view.

Note the types and names of the constraints.

17. Display the object names and types from the USER_OBJECTS data dictionary view for the
EMP2 and DEPT2 tables. Notice that the new tables and a new index were created.

If you have time, complete the following exercise:
18. Modify the EMP2 table. Add a COMMISSION column of NUMBER data type, precision 2,

scale 2. Add a constraint to the COMMISSION column that ensures that a commission
value is greater than zero.

19. Drop the EMP2 and DEPT2 tables so that they cannot be restored. Verify the recycle bin.
20. Create the DEPT_NAMED_INDEX table based on the following table instance chart.

Name the index for the PRIMARY KEY column as DEPT_PK_IDX.

Column Name Deptno Dname

Primary Key Yes

Data Type Number VARCHAR2

Length 4 30

Copyright © 2004, Oracle. All rights reserved.

Manipulating Large Data Sets

Oracle Database 10g: SQL Fundamentals II 3-2

3-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Manipulate data using subqueries
• Describe the features of multitable inserts
• Use the following types of multitable inserts

– Unconditional INSERT
– Pivoting INSERT
– Conditional ALL INSERT
– Conditional FIRST INSERT

• Merge rows in a table
• Track the changes to data over a period of time

Objectives
In this lesson, you learn how to manipulate data in the Oracle database by using subqueries. You
also learn about multitable insert statements, the MERGE statement, and tracking changes in the
database.

Oracle Database 10g: SQL Fundamentals II 3-3

3-3 Copyright © 2004, Oracle. All rights reserved.

Using Subqueries to Manipulate Data

You can use subqueries in DML statements to:
• Copy data from one table to another
• Retrieve data from an inline view
• Update data in one table based on the values of

another table
• Delete rows from one table based on rows in a

another table

Using Subqueries to Manipulate Data
Subqueries can be used to retrieve data from a table that you can use as input to an INSERT into
a different table. In this way you can easily copy large volumes of data from one table to another
with one single SELECT statement. Similarly, you can use subqueries to do mass updates and
deletes by using them in the WHERE clause of the UPDATE and DELETE statements. You can
also use subqueries in the FROM clause of a SELECT statement. This is called an inline view.

Oracle Database 10g: SQL Fundamentals II 3-4

3-4 Copyright © 2004, Oracle. All rights reserved.

Copying Rows from Another Table

• Write your INSERT statement with a subquery.

• Do not use the VALUES clause.
• Match the number of columns in the INSERT

clause with that in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

33 rows created.

Copying Rows from Another Table
You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In place of the VALUES clause, you use a subquery.
Syntax
INSERT INTO table [column (, column)] subquery;

In the syntax:
table is the table name
column is the name of the column in the table to populate
subquery is the subquery that returns rows into the table

The number of columns and their data types in the column list of the INSERT clause must match
the number of values and their data types in the subquery. To create a copy of the rows of a
table, use SELECT * in the subquery.

INSERT INTO EMPL3
SELECT *
FROM employees;

For more information, see Oracle Database 10g SQL Reference.

Oracle Database 10g: SQL Fundamentals II 3-5

3-5 Copyright © 2004, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM empl3
WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000, 50);

1 row created.

Inserting Using a Subquery as a Target
You can use a subquery in place of the table name in the INTO clause of the INSERT
statement.
The select list of this subquery must have the same number of columns as the column list of the
VALUES clause. Any rules on the columns of the base table must be followed in order for the
INSERT statement to work successfully. For example, you cannot put in a duplicate employee
ID or leave out a value for a mandatory NOT NULL column.
This application of subqueries helps avoid having to create a view just for performing an
INSERT.

Oracle Database 10g: SQL Fundamentals II 3-6

3-6 Copyright © 2004, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

Verify the results.

SELECT employee_id, last_name, email, hire_date,
job_id, salary, department_id

FROM employees
WHERE department_id = 50;

…

Inserting Using a Subquery as a Target (continued)
The example shows the results of the subquery that was used to identify the table for the
INSERT statement.

Oracle Database 10g: SQL Fundamentals II 3-7

3-7 Copyright © 2004, Oracle. All rights reserved.

SELECT a.last_name, a.salary,
a.department_id, b.salavg

FROM employees a, (SELECT department_id,
AVG(salary) salavg
FROM employees
GROUP BY department_id) b

WHERE a.department_id = b.department_id
AND a.salary > b.salavg;

Retrieving Data with a Subquery as Source

…

Retrieving Data Using a Subquery as Source
You can use a subquery in the FROM clause of a SELECT statement, which is very similar to
how views are used. A subquery in the FROM clause of a SELECT statement is also called an
inline view. A subquery in the FROM clause of a SELECT statement defines a data source for
that particular SELECT statement, and only that SELECT statement. The example on the slide
displays employee last names, salaries, department numbers, and average salaries for all the
employees who earn more than the average salary in their department. The subquery in the FROM
clause is named b, and the outer query references the SALAVG column using this alias.

Oracle Database 10g: SQL Fundamentals II 3-8

3-8 Copyright © 2004, Oracle. All rights reserved.

UPDATE empl3
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 168)

WHERE employee_id = 114;
1 row updated.

Updating Two Columns with a Subquery

Update the job and salary of employee 114 to match
the job of employee 205 and the salary of employee
168.

Updating Two Columns with a Subquery
You can update multiple columns in the SET clause of an UPDATE statement by writing
multiple subqueries.
Syntax

UPDATE table
SET column =

(SELECT column
FROM table
WHERE condition)

[,
column =

(SELECT column
FROM table
WHERE condition)]

[WHERE condition] ;

Note: If no rows are updated, a message “0 rows updated.” is returned.

Oracle Database 10g: SQL Fundamentals II 3-9

3-9 Copyright © 2004, Oracle. All rights reserved.

UPDATE empl3
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

1 row updated.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update rows
in a table based on values from another table.

Updating Rows Based on Another Table
You can use subqueries in UPDATE statements to update rows in a table. The example on the
slide updates the EMPL3 table based on the values from the EMPLOYEES table. It changes the
department number of all employees with employee 200’s job ID to employee 100’s current
department number.

Oracle Database 10g: SQL Fundamentals II 3-10

3-10 Copyright © 2004, Oracle. All rights reserved.

DELETE FROM empl3
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name

LIKE '%Public%');
1 row deleted.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove rows
from a table based on values from another table.

Deleting Rows Based on Another Table
You can use subqueries to delete rows from a table based on values from another table. The
example on the slide deletes all the employees who are in a department where the department
name contains the string “Public.” The subquery searches the DEPARTMENTS table to find the
department number based on the department name containing the string “Public.” The subquery
then feeds the department number to the main query, which deletes rows of data from the
EMPLOYEES table based on this department number.

Oracle Database 10g: SQL Fundamentals II 3-11

3-11 Copyright © 2004, Oracle. All rights reserved.

Using the WITH CHECK OPTION Keyword
on DML Statements

• A subquery is used to identify the table and
columns of the DML statement.

• The WITH CHECK OPTION keyword prohibits you
from changing rows that are not in the subquery.

INSERT INTO (SELECT employee_id, last_name, email,
hire_date, job_id, salary

FROM empl3
WHERE department_id = 50

WITH CHECK OPTION)
VALUES (99998, 'Smith', 'JSMITH',

TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000);

INSERT INTO
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

The WITH CHECK OPTION Keyword
Specify WITH CHECK OPTION to indicate that, if the subquery is used in place of a table in an
INSERT, UPDATE, or DELETE statement, no changes that produce rows that are not included in
the subquery are permitted to that table.
In the example shown, the WITH CHECK OPTION keyword is used. The subquery identifies
rows that are in department 50, but the department ID is not in the SELECT list, and a value is
not provided for it in the VALUES list. Inserting this row results in a department ID of null,
which is not in the subquery.

Oracle Database 10g: SQL Fundamentals II 3-12

3-12 Copyright © 2004, Oracle. All rights reserved.

Overview of the Explicit Default Feature

• With the explicit default feature, you can use the
DEFAULT keyword as a column value where the
column default is desired.

• The addition of this feature is for compliance with
the SQL:1999 standard.

• This allows the user to control where and when
the default value should be applied to data.

• Explicit defaults can be used in INSERT and
UPDATE statements.

Explicit Defaults
The DEFAULT keyword can be used in INSERT and UPDATE statements to identify a default
column value. If no default value exists, a null value is used.
The DEFAULT option saves you from hard coding the default value in your programs or
querying the dictionary to find it, as was done before this feature was introduced. Hard coding
the default is a problem if the default changes because the code consequently needs changing.
Accessing the dictionary is not usually done in an application program, so this is a very
important feature.

Oracle Database 10g: SQL Fundamentals II 3-13

3-13 Copyright © 2004, Oracle. All rights reserved.

Using Explicit Default Values

• DEFAULT with INSERT:

• DEFAULT with UPDATE:

INSERT INTO deptm3
(department_id, department_name, manager_id)

VALUES (300, 'Engineering', DEFAULT);

UPDATE deptm3
SET manager_id = DEFAULT
WHERE department_id = 10;

Using Explicit Default Values
Specify DEFAULT to set the column to the value previously specified as the default value for the
column. If no default value for the corresponding column has been specified, the Oracle server
sets the column to null.
In the first example on the slide, the INSERT statement uses a default value for the
MANAGER_ID column. If there is no default value defined for the column, a null value is
inserted instead.
The second example uses the UPDATE statement to set the MANAGER_ID column to a default
value for department 10. If no default value is defined for the column, it changes the value to
null.
Note: When creating a table, you can specify a default value for a column. This is discussed in
the lesson titled “Creating and Managing Tables.”

Oracle Database 10g: SQL Fundamentals II 3-14

3-14 Copyright © 2004, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

INSERT ALL
INTO table_a VALUES(…,…,…)
INTO table_b VALUES(…,…,…)
INTO table_c VALUES(…,…,…)
SELECT …
FROM sourcetab
WHERE …;

Table_a

Table_b

Table_c

Overview of Multitable INSERT Statements
In a multitable INSERT statement, you insert computed rows derived from the rows returned
from the evaluation of a subquery into one or more tables.
Multitable INSERT statements can play a very useful role in a data warehouse scenario. You
need to load your data warehouse regularly so that it can serve its purpose of facilitating business
analysis. To do this, data from one or more operational systems must be extracted and copied
into the warehouse. The process of extracting data from the source system and bringing it into
the data warehouse is commonly called ETL, which stands for extraction, transformation, and
loading.
During extraction, the desired data must be identified and extracted from many different sources,
such as database systems and applications. After extraction, the data must be physically
transported to the target system or an intermediate system for further processing. Depending on
the chosen means of transportation, some transformations can be done during this process. For
example, a SQL statement that directly accesses a remote target through a gateway can
concatenate two columns as part of the SELECT statement.
After data is loaded into the Oracle database, data transformations can be executed using SQL
operations. A multitable INSERT statement is one of the techniques for implementing SQL data
transformations.

Oracle Database 10g: SQL Fundamentals II 3-15

3-15 Copyright © 2004, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

• The INSERT…SELECT statement can be used to
insert rows into multiple tables as part of a single
DML statement.

• Multitable INSERT statements can be used in data
warehousing systems to transfer data from one or
more operational sources to a set of target tables.

• They provide significant performance
improvement over:
– Single DML versus multiple INSERT…SELECT

statements
– Single DML versus a procedure to do multiple

inserts using IF...THEN syntax

Overview of Multitable INSERT Statements (continued)
Multitable INSERT statements offer the benefits of the INSERT ... SELECT statement when
multiple tables are involved as targets. Using functionality prior to Oracle9i Database, you had to
deal with n independent INSERT ... SELECT statements, thus processing the same source
data n times and increasing the transformation workload n times.
As with the existing INSERT ... SELECT statement, the new statement can be parallelized
and used with the direct-load mechanism for faster performance.
Each record from any input stream, such as a nonrelational database table, can now be converted
into multiple records for a more relational database table environment. To alternatively
implement this functionality, you were required to write multiple INSERT statements.

Oracle Database 10g: SQL Fundamentals II 3-16

3-16 Copyright © 2004, Oracle. All rights reserved.

Types of Multitable INSERT Statements

The different types of multitable INSERT statements
are:
• Unconditional INSERT
• Conditional ALL INSERT
• Conditional FIRST INSERT
• Pivoting INSERT

Types of Multitable INSERT Statements
The types of multitable INSERT statements are:

• Unconditional INSERT
• Conditional ALL INSERT
• Conditional FIRST INSERT
• Pivoting INSERT

You use different clauses to indicate the type of INSERT to be executed.

Oracle Database 10g: SQL Fundamentals II 3-17

3-17 Copyright © 2004, Oracle. All rights reserved.

Multitable INSERT Statements

• Syntax

• conditional_insert_clause

INSERT [ALL] [conditional_insert_clause]
[insert_into_clause values_clause] (subquery)

[ALL] [FIRST]
[WHEN condition THEN] [insert_into_clause values_clause]
[ELSE] [insert_into_clause values_clause]

Multitable INSERT Statements
The slide displays the generic format for multitable INSERT statements.
Unconditional INSERT: ALL into_clause
Specify ALL followed by multiple insert_into_clauses to perform an unconditional
multitable insert. The Oracle server executes each insert_into_clause once for each row
returned by the subquery.
Conditional INSERT: conditional_insert_clause
Specify the conditional_insert_clause to perform a conditional multitable INSERT.
The Oracle server filters each insert_into_clause through the corresponding WHEN
condition, which determines whether that insert_into_clause is executed. A single
multitable INSERT statement can contain up to 127 WHEN clauses.
Conditional INSERT: ALL
If you specify ALL, the Oracle server evaluates each WHEN clause regardless of the results of the
evaluation of any other WHEN clause. For each WHEN clause whose condition evaluates to true,
the Oracle server executes the corresponding INTO clause list.

Oracle Database 10g: SQL Fundamentals II 3-18

Multitable INSERT Statements (continued)
Conditional INSERT: FIRST
If you specify FIRST, the Oracle server evaluates each WHEN clause in the order in which it
appears in the statement. If the first WHEN clause evaluates to true, the Oracle server executes
the corresponding INTO clause and skips subsequent WHEN clauses for the given row.
Conditional INSERT: ELSE Clause
For a given row, if no WHEN clause evaluates to true:

• If you have specified an ELSE clause, the Oracle server executes the INTO clause list
associated with the ELSE clause.

• If you did not specify an ELSE clause, the Oracle server takes no action for that row.
Restrictions on Multitable INSERT Statements

• You can perform multitable INSERT statements only on tables, not on views or
materialized views.

• You cannot perform a multitable INSERT into a remote table.
• You cannot specify a table collection expression when performing a multitable

INSERT.
• In a multitable INSERT, all of the insert_into_clauses cannot combine to

specify more than 999 target columns.

Oracle Database 10g: SQL Fundamentals II 3-19

3-19 Copyright © 2004, Oracle. All rights reserved.

Unconditional INSERT ALL

• Select the EMPLOYEE_ID, HIRE_DATE, SALARY, and
MANAGER_ID values from the EMPLOYEES table for
those employees whose EMPLOYEE_ID is greater
than 200.

• Insert these values into the SAL_HISTORY and
MGR_HISTORY tables using a multitable INSERT.

INSERT ALL
INTO sal_history VALUES(EMPID,HIREDATE,SAL)
INTO mgr_history VALUES(EMPID,MGR,SAL)
SELECT employee_id EMPID, hire_date HIREDATE,

salary SAL, manager_id MGR
FROM employees
WHERE employee_id > 200;

12 rows created.

Unconditional INSERT ALL
The example in the slide inserts rows into both the SAL_HISTORY and the MGR_HISTORY
tables.
The SELECT statement retrieves the details of employee ID, hire date, salary, and manager ID of
those employees whose employee ID is greater than 200 from the EMPLOYEES table. The
details of the employee ID, hire date, and salary are inserted into the SAL_HISTORY table. The
details of employee ID, manager ID, and salary are inserted into the MGR_HISTORY table.
This INSERT statement is referred to as an unconditional INSERT, because no further
restriction is applied to the rows that are retrieved by the SELECT statement. All the rows
retrieved by the SELECT statement are inserted into the two tables, SAL_HISTORY and
MGR_HISTORY. The VALUES clause in the INSERT statements specifies the columns from the
SELECT statement that must be inserted into each of the tables. Each row returned by the
SELECT statement results in two insertions, one for the SAL_HISTORY table and one for the
MGR_HISTORY table.
The feedback 12 rows created can be interpreted to mean that a total of eight insertions
were performed on the base tables, SAL_HISTORY and MGR_HISTORY.

Oracle Database 10g: SQL Fundamentals II 3-20

3-20 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT ALL

• Select the EMPLOYEE_ID, HIRE_DATE, SALARY, and
MANAGER_ID values from the EMPLOYEES table for
those employees whose EMPLOYEE_ID is greater
than 200.

• If the SALARY is greater than $10,000, insert these
values into the SAL_HISTORY table using a
conditional multitable INSERT statement.

• If the MANAGER_ID is greater than 200, insert these
values into the MGR_HISTORY table using a
conditional multitable INSERT statement.

Conditional INSERT ALL
The problem statement for a conditional INSERT ALL statement is specified on the slide. The
solution to this problem is shown on the next page.

Oracle Database 10g: SQL Fundamentals II 3-21

3-21 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT ALL

INSERT ALL
WHEN SAL > 10000 THEN
INTO sal_history VALUES(EMPID,HIREDATE,SAL)

WHEN MGR > 200 THEN
INTO mgr_history VALUES(EMPID,MGR,SAL)
SELECT employee_id EMPID,hire_date HIREDATE,

salary SAL, manager_id MGR
FROM employees
WHERE employee_id > 200;

4 rows created.

Conditional INSERT ALL (continued)
The example on the slide is similar to the example on the previous slide because it inserts rows
into both the SAL_HISTORY and the MGR_HISTORY tables. The SELECT statement retrieves
the details of employee ID, hire date, salary, and manager ID of those employees whose
employee ID is greater than 200 from the EMPLOYEES table. The details of employee ID, hire
date, and salary are inserted into the SAL_HISTORY table. The details of employee ID, manager
ID, and salary are inserted into the MGR_HISTORY table.
This INSERT statement is referred to as a conditional ALL INSERT, because a further
restriction is applied to the rows that are retrieved by the SELECT statement. From the rows that
are retrieved by the SELECT statement, only those rows in which the value of the SAL column is
more than 10000 are inserted in the SAL_HISTORY table, and similarly only those rows where
the value of the MGR column is more than 200 are inserted in the MGR_HISTORY table.
Observe that unlike the previous example, where eight rows were inserted into the tables, in this
example only four rows are inserted.
The feedback 4 rows created can be interpreted to mean that a total of four inserts were
performed on the base tables, SAL_HISTORY and MGR_HISTORY.

Oracle Database 10g: SQL Fundamentals II 3-22

3-22 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT FIRST

• Select the DEPARTMENT_ID, SUM(SALARY), and
MAX(HIRE_DATE) from the EMPLOYEES table.

• If the SUM(SALARY) is greater than $25,000, then
insert these values into the SPECIAL_SAL, using a
conditional FIRST multitable INSERT.

• If the first WHEN clause evaluates to true, then the
subsequent WHEN clauses for this row should be
skipped.

• For the rows that do not satisfy the first WHEN
condition, insert into the HIREDATE_HISTORY_00,
HIREDATE_HISTORY_99, or HIREDATE_HISTORY
tables, based on the value in the HIRE_DATE
column using a conditional multitable INSERT.

Conditional INSERT FIRST
The problem statement for a conditional FIRST INSERT statement is specified on the slide.
The solution to this problem is shown on the next page.

Oracle Database 10g: SQL Fundamentals II 3-23

3-23 Copyright © 2004, Oracle. All rights reserved.

Conditional INSERT FIRST

INSERT FIRST
WHEN SAL > 25000 THEN
INTO special_sal VALUES(DEPTID, SAL)

WHEN HIREDATE like ('%00%') THEN
INTO hiredate_history_00 VALUES(DEPTID,HIREDATE)

WHEN HIREDATE like ('%99%') THEN
INTO hiredate_history_99 VALUES(DEPTID, HIREDATE)

ELSE
INTO hiredate_history VALUES(DEPTID, HIREDATE)
SELECT department_id DEPTID, SUM(salary) SAL,

MAX(hire_date) HIREDATE
FROM employees
GROUP BY department_id;

12 rows created.

Conditional INSERT FIRST (continued)
The example on the slide inserts rows into more than one table using a single INSERT
statement. The SELECT statement retrieves the details of department ID, total salary, and
maximum hire date for every department in the EMPLOYEES table.
This INSERT statement is referred to as a conditional FIRST INSERT, because an exception
is made for the departments whose total salary is more than $25,000. The condition WHEN ALL
> 25000 is evaluated first. If the total salary for a department is more than $25,000, then the
record is inserted into the SPECIAL_SAL table irrespective of the hire date. If this first WHEN
clause evaluates to true, the Oracle server executes the corresponding INTO clause and skips
subsequent WHEN clauses for this row.
For the rows that do not satisfy the first WHEN condition (WHEN SAL > 25000), the rest of the
conditions are evaluated in the same way as a conditional INSERT statement, and the records
retrieved by the SELECT statement are inserted into the HIREDATE_HISTORY_00, or
HIREDATE_HISTORY_99, or HIREDATE_HISTORY tables, based on the value in the
HIREDATE column.
The feedback 12 rows created can be interpreted to mean that a total of eight INSERT
statements were performed on the base tables, SPECIAL_SAL, HIREDATE_HISTORY_00,
HIREDATE_HISTORY_99, and HIREDATE_HISTORY.

Oracle Database 10g: SQL Fundamentals II 3-24

3-24 Copyright © 2004, Oracle. All rights reserved.

Pivoting INSERT

• Suppose you receive a set of sales records from a
nonrelational database table,
SALES_SOURCE_DATA, in the following format:
EMPLOYEE_ID, WEEK_ID, SALES_MON, SALES_TUE,
SALES_WED, SALES_THUR, SALES_FRI

• You want to store these records in the
SALES_INFO table in a more typical relational
format:
EMPLOYEE_ID, WEEK, SALES

• Using a pivoting INSERT, convert the set of sales
records from the nonrelational database table to
relational format.

Pivoting INSERT
Pivoting is an operation in which you must build a transformation such that each record from any
input stream, such as a nonrelational database table, must be converted into multiple records for
a more relational database table environment.
To solve the problem mentioned on the slide, you must build a transformation such that each
record from the original nonrelational database table, SALES_SOURCE_DATA, is converted into
five records for the data warehouse’s SALES_INFO table. This operation is commonly referred
to as pivoting.
The problem statement for a pivoting INSERT statement is specified on the slide. The solution
to this problem is shown on the next page.

Oracle Database 10g: SQL Fundamentals II 3-25

3-25 Copyright © 2004, Oracle. All rights reserved.

Pivoting INSERT

INSERT ALL
INTO sales_info VALUES (employee_id,week_id,sales_MON)
INTO sales_info VALUES (employee_id,week_id,sales_TUE)
INTO sales_info VALUES (employee_id,week_id,sales_WED)
INTO sales_info VALUES (employee_id,week_id,sales_THUR)
INTO sales_info VALUES (employee_id,week_id, sales_FRI)
SELECT EMPLOYEE_ID, week_id, sales_MON, sales_TUE,

sales_WED, sales_THUR,sales_FRI
FROM sales_source_data;

5 rows created.

Pivoting INSERT (continued)
In the example on the slide, the sales data is received from the nonrelational database table
SALES_SOURCE_DATA, which is the details of the sales performed by a sales representative on
each day of a week, for a week with a particular week ID.

DESC SALES_SOURCE_DATA

Oracle Database 10g: SQL Fundamentals II 3-26

Pivoting INSERT (continued)
SELECT * FROM SALES_SOURCE_DATA;

DESC SALES_INFO

SELECT * FROM sales_info;

Observe in the preceding example that by using a pivoting INSERT, one row from the
SALES_SOURCE_DATA table is converted into five records for the relational table,
SALES_INFO.

Oracle Database 10g: SQL Fundamentals II 3-27

3-27 Copyright © 2004, Oracle. All rights reserved.

The MERGE Statement

• Provides the ability to conditionally update or
insert data into a database table

• Performs an UPDATE if the row exists, and an
INSERT if it is a new row:
– Avoids separate updates
– Increases performance and ease of use
– Is useful in data warehousing applications

MERGE Statements
The Oracle server supports the MERGE statement for INSERT, UPDATE, and DELETE
operations. Using this statement, you can update, insert, or delete a row conditionally into a
table, thus avoiding multiple DML statements. The decision whether to update, insert, or delete
into the target table is based on a condition in the ON clause.
You must have the INSERT and UPDATE object privileges on the target table and the SELECT
object privilege on the source table. To specify the DELETE clause of the
merge_update_clause, you must also have the DELETE object privilege on the target
table.
The MERGE statement is deterministic. You cannot update the same row of the target table
multiple times in the same MERGE statement.
An alternative approach is to use PL/SQL loops and multiple DML statements. The MERGE
statement, however, is easy to use and more simply expressed as a single SQL statement.
The MERGE statement is suitable in a number of data warehousing applications. For example, in
a data warehousing application you may need to work with data coming from multiple sources,
some of which may be duplicates. With the MERGE statement, you can conditionally add or
modify rows.

Oracle Database 10g: SQL Fundamentals II 3-28

3-28 Copyright © 2004, Oracle. All rights reserved.

The MERGE Statement Syntax

You can conditionally insert or update rows in a table
by using the MERGE statement.

MERGE INTO table_name table_alias
USING (table|view|sub_query) alias
ON (join condition)
WHEN MATCHED THEN
UPDATE SET
col1 = col_val1,
col2 = col2_val

WHEN NOT MATCHED THEN
INSERT (column_list)
VALUES (column_values);

Merging Rows
You can update existing rows and insert new rows conditionally by using the MERGE statement.
In the syntax:
INTO clause specifies the target table you are updating or inserting into
USING clause identifies the source of the data to be updated or inserted; can be

a table, view, or subquery
ON clause the condition upon which the MERGE operation either updates or

inserts
WHEN MATCHED | instructs the server how to respond to the results of the join

condition
WHEN NOT MATCHED

For more information, see Oracle Database 10g SQL Reference, “MERGE.”

Oracle Database 10g: SQL Fundamentals II 3-29

3-29 Copyright © 2004, Oracle. All rights reserved.

MERGE INTO empl3 c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
...
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

Merging Rows

Insert or update rows in the EMPL3 table to match the
EMPLOYEES table.

Example of Merging Rows
MERGE INTO empl3 c

USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
c.phone_number = e.phone_number,
c.hire_date = e.hire_date,
c.job_id = e.job_id,
c.salary = e.salary,
c.commission_pct = e.commission_pct,
c.manager_id = e.manager_id,
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

Oracle Database 10g: SQL Fundamentals II 3-30

3-30 Copyright © 2004, Oracle. All rights reserved.

Merging Rows

MERGE INTO empl3 c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

...
WHEN NOT MATCHED THEN
INSERT VALUES...;

TRUNCATE TABLE empl3;

SELECT *
FROM empl3;
no rows selected

SELECT *
FROM empl3;

107 rows selected.

Example of Merging Rows (continued)
The example on the slide matches the EMPLOYEE_ID in the EMPL3 table to the
EMPLOYEE_ID in the EMPLOYEES table. If a match is found, the row in the EMPL3 table is
updated to match the row in the EMPLOYEES table. If the row is not found, it is inserted into the
EMPL3 table.
The condition c.employee_id = e.employee_id is evaluated. Because the EMPL3
table is empty, the condition returns false—there are no matches. The logic falls into the WHEN
NOT MATCHED clause, and the MERGE command inserts the rows of the EMPLOYEES table
into the EMPL3 table.
If rows existed in the EMPL3 table and employee IDs matched in both tables (the EMPL3 and
EMPLOYEES tables), then the existing rows in the EMPL3 table would be updated to match the
EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals II 3-31

3-31 Copyright © 2004, Oracle. All rights reserved.

Tracking Changes in Data

Versions of retrieved rows

SELECT
…

Tracking Changes in Data
You may discover that somehow data in a table has been inappropriately changed. To research
this, you can use multiple flashback queries to view row data at specific points in time. More
efficiently, you can use the Flashback Version Query feature to view all changes to a row over a
period of time. This feature enables you to append a VERSIONS clause to a SELECT statement
that specifies an SCN or timestamp range between which you want to view changes to row
values. The query also can return associated metadata, such as the transaction responsible for the
change.
Further, after you identify an erroneous transaction, you can then use the Flashback Transaction
Query feature to identify other changes that were done by the transaction. You then have the
option of using the Flashback Table feature to restore the table to a state before the changes were
made.
You can use a query on a table with a VERSIONS clause to produce all the versions of all the
rows that exist or ever existed between the time the query was issued and the
undo_retention seconds before the current time. undo_retention is an initialization
parameter which is an auto-tuned parameter. A query that includes a VERSIONS clause is
referred to as a version query. The results of a version query behaves as if the WHERE clause
were applied to the versions of the rows. The version query returns versions of the rows only
across transactions.
System change number (SCN): The Oracle server assigns a system change number (SCN) to
identify the redo records for each committed transaction.

Oracle Database 10g: SQL Fundamentals II 3-32

3-32 Copyright © 2004, Oracle. All rights reserved.

Example of the Flashback Version Query

SELECT salary FROM employees3
WHERE employee_id = 107;

UPDATE employees3 SET salary = salary * 1.30
WHERE employee_id = 107;

COMMIT;

SELECT salary FROM employees3
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE

WHERE employee_id = 107;

1

2

3

Example of the Flashback Version Query
In the example on the slide, the salary for employee 107 is retrieved (1). The salary for employee
107 is increased by 30 percent and this change is committed (2). The different versions of salary
are displayed (3).
The VERSIONS clause does not change the plan of the query. For example, if you run a query
on a table that uses the index access method, then the same query on the same table with a
VERSIONS clause continues to use the index access method. The versions of the rows returned
by the version query are versions of the rows across transactions. The VERSIONS clause has no
effect on the transactional behavior of a query. This means that a query on a table with a
VERSIONS clause still inherits the query environment of the ongoing transaction.
The default VERSIONS clause can be specified as VERSIONS BETWEEN
{SCN|TIMESTAMP} MINVALUE AND MAXVALUE.
The VERSIONS clause is a SQL extension only for queries. You can have DML and DDL
operations that use a VERSIONS clause within subqueries. The row version query retrieves all
the committed versions of the selected rows. Changes made by the current active transaction are
not returned. The version query retrieves all incarnations of the rows. This essentially means that
versions returned include deleted and subsequent reinserted versions of the rows.

Oracle Database 10g: SQL Fundamentals II 3-33

Example of Obtaining Row Versions
The row access for a version query can be defined in one of the following two categories:
• ROWID-based row access: In case of ROWID-based access, all versions of the specified

ROWID are returned irrespective of the row content. This essentially means that all versions
of the slot in the block indicated by the ROWID are returned.

• All other row access: For all other row access, all versions of the rows are returned.

Oracle Database 10g: SQL Fundamentals II 3-34

3-34 Copyright © 2004, Oracle. All rights reserved.

The VERSIONS BETWEEN Clause

SELECT versions_starttime "START_DATE",
versions_endtime "END_DATE",
salary

FROM employees
VERSIONS BETWEEN SCN MINVALUE
AND MAXVALUE

WHERE last_name = 'Lorentz';

The VERSIONS BETWEEN Clause
You can use the VERSIONS BETWEEN clause to retrieve all of the versions of the rows that
exist or have ever existed between the time the query was issued and a point back in time.
If the undo retention time is smaller than the lower bound time/SCN of the BETWEEN clause,
then the query retrieves versions up to the undo retention time only. The time interval of the
BETWEEN clause can be specified as an SCN interval, or a wall clock interval. This time interval
is closed at both the lower and the upper bound.
In the example, Lorentz’s salary changes are retrieved. The NULL value for the END_DATE for
the first version indicates that this was the existing version at the time of the query. The NULL
for the START_DATE for the last version indicates that this version was created at a time before
the undo retention time.

Oracle Database 10g: SQL Fundamentals II 3-35

3-35 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use DML statements and control transactions
• Describe the features of multitable inserts
• Use the following types of multitable inserts

– Unconditional INSERT
– Pivoting INSERT
– Conditional ALL INSERT
– Conditional FIRST INSERT

• Merge rows in a table
• Manipulate data using subqueries
• Track the changes to data over a period of time

Summary
In this lesson, you should have learned how to manipulate data in the Oracle database by using
subqueries. You also should have learned about multitable INSERT statements, the MERGE
statement, and tracking changes in the database.

Oracle Database 10g: SQL Fundamentals II 3-36

3-36 Copyright © 2004, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
• Performing multitable INSERTs
• Performing MERGE operations
• Tracking row versions

Practice 3: Overview
In this practice, you add rows to the emp_data table, update and delete data from the table, and
track your transactions.

Oracle Database 10g: SQL Fundamentals II 3-37

Practice 3
1. Run the lab_03_01.sql script in the lab folder to create the SAL_HISTORY table.
2. Display the structure of the SAL_HISTORY table.

3. Run the lab_03_03.sql script in the lab folder to create the MGR_HISTORY table.
4. Display the structure of the MGR_HISTORY table.

5. Run the lab_03_05.sql script in the lab folder to create the SPECIAL_SAL table.
6. Display the structure of the SPECIAL_SAL table.

7. a. Write a query to do the following:
- Retrieve the details of the employee ID, hire date, salary, and manager ID of those

employees whose employee ID is less than 125 from the EMPLOYEES table.
- If the salary is more than $20,000, insert the details of employee ID and salary into

the SPECIAL_SAL table.
- Insert the details of employee ID, hire date, and salary into the SAL_HISTORY

table.
- Insert the details of the employee ID, manager ID, and salary into the
MGR_HISTORY table.

Oracle Database 10g: SQL Fundamentals II 3-38

Practice 3 (continued)
b. Display the records from the SPECIAL_SAL table.

c. Display the records from the SAL_HISTORY table.

Oracle Database 10g: SQL Fundamentals II 3-39

Practice 3 (continued)
d. Display the records from the MGR_HISTORY table.

Oracle Database 10g: SQL Fundamentals II 3-40

Practice 3 (continued)
8. a. Run the lab_03_08a.sql script in the lab folder to create the

SALES_SOURCE_DATA table.
b. Run the lab_03_08b.sql script in the lab folder to insert records into the
SALES_SOURCE_DATA table.

c. Display the structure of the SALES_SOURCE_DATA table.

d. Display the records from the SALES_SOURCE_DATA table.

e. Run the lab_03_08c.sql script in the lab folder to create the
SALES_INFO table.

f. Display the structure of the SALES_INFO table.

Oracle Database 10g: SQL Fundamentals II 3-41

Practice 3 (continued)
g. Write a query to do the following:

Retrieve the details of employee ID, week ID, sales on Monday, sales on Tuesday,
sales on Wednesday, sales on Thursday, and sales on Friday from the
SALES_SOURCE_DATA table.
Build a transformation such that each record retrieved from the
SALES_SOURCE_DATA table is converted into multiple records for the
SALES_INFO table.
Hint: Use a pivoting INSERT statement.

h. Display the records from the SALES_INFO table.

9. You have the data of past employees stored in a flat file called emp.data. You want to
store the names and e-mail IDs of all employees past and present in a table. To do this,
first create an external table called EMP_DATA using the emp.dat source file in the
emp_dir directory. You can use the script in lab_03_09.sql to do this.

10. Next, run the lab_03_10.sql script to create the EMP_HIST table.
a. Increase the size of the e-mail column to 45.
b. Merge the data in the EMP_DATA table created in the last lab into the data in the

EMP_HIST table. Assume that the data in the external EMP_DATA table is the most
up-to-date. If a row in the EMP_DATA table matches the EMP_HIST table, update
the e-mail column of the EMP_HIST table to match the EMP_DATA table row. If a
row in the EMP_DATA table does not match, insert it into the EMP_HIST table. Rows
are considered matching when the employee’s first and last name are identical.

c. Retrieve the rows from EMP_HIST after the merge.

Oracle Database 10g: SQL Fundamentals II 3-42

Practice 3 (continued)

11. Create table EMP3 using the lab_03_11.sql script. In the EMP3 table change the
department for Kochhar to 60 and commit your change. Next, change the department for
Kochhar to 50 and commit your change. Track the changes to Kochhar using the Row
Versions feature.

…

Copyright © 2004, Oracle. All rights reserved.

Generating Reports by Grouping
Related Data

Oracle Database 10g: SQL Fundamentals II 4-2

4-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Use the ROLLUP operation to produce

subtotal values
• Use the CUBE operation to produce cross-

tabulation values
• Use the GROUPING function to identify the row

values created by ROLLUP or CUBE
• Use GROUPING SETS to produce a single result set

Objectives
In this lesson you learn how to:

• Group data to obtain the following:
- Subtotal values by using the ROLLUP operator
- Cross-tabulation values by using the CUBE operator

• Use the GROUPING function to identify the level of aggregation in the result set produced
by a ROLLUP or CUBE operator

• Use GROUPING SETS to produce a single result set that is equivalent to a UNION ALL
approach

Oracle Database 10g: SQL Fundamentals II 4-3

4-3 Copyright © 2004, Oracle. All rights reserved.

Review of Group Functions

• Group functions operate on sets of rows to give
one result per group.

• Example:

SELECT [column,] group_function(column). . .
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

SELECT AVG(salary), STDDEV(salary),
COUNT(commission_pct),MAX(hire_date)

FROM employees
WHERE job_id LIKE 'SA%';

Group Functions
You can use the GROUP BY clause to divide the rows in a table into groups. You can then use
group functions to return summary information for each group. Group functions can appear in
select lists and in ORDER BY and HAVING clauses. The Oracle server applies the group
functions to each group of rows and returns a single result row for each group.
Types of group functions: Each of the group functions AVG, SUM, MAX, MIN, COUNT,
STDDEV, and VARIANCE accept one argument. The functions AVG, SUM, STDDEV, and
VARIANCE operate only on numeric values. MAX and MIN can operate on numeric, character, or
date data values. COUNT returns the number of non-null rows for the given expression. The
example on the slide calculates the average salary, standard deviation on the salary, number of
employees earning a commission, and the maximum hire date for those employees whose
JOB_ID begins with SA.
Guidelines for Using Group Functions

• The data types for the arguments can be CHAR, VARCHAR2, NUMBER, or DATE.
• All group functions except COUNT(*) ignore null values. To substitute a value for null

values, use the NVL function. COUNT returns either a number or zero.
• The Oracle server implicitly sorts the result set in ascending order of the grouping columns

specified, when you use a GROUP BY clause. To override this default ordering, you can
use DESC in an ORDER BY clause.

Oracle Database 10g: SQL Fundamentals II 4-4

4-4 Copyright © 2004, Oracle. All rights reserved.

Review of the GROUP BY Clause

• Syntax:

• Example:
SELECT department_id, job_id, SUM(salary),

COUNT(employee_id)
FROM employees
GROUP BY department_id, job_id ;

SELECT [column,]
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

group_function(column). . .

Review of GROUP BY Clause
The example illustrated on the slide is evaluated by the Oracle server as follows:

• The SELECT clause specifies that the following columns are to be retrieved:
- Department ID and job ID columns from the EMPLOYEES table
- The sum of all the salaries and the number of employees in each group that you have

specified in the GROUP BY clause
• The GROUP BY clause specifies how the rows should be grouped in the table. The total

salary and the number of employees are calculated for each job ID within each department.
The rows are grouped by department ID and then grouped by job within each department.

Oracle Database 10g: SQL Fundamentals II 4-5

4-5 Copyright © 2004, Oracle. All rights reserved.

Review of the HAVING Clause

• Use the HAVING clause to specify which groups
are to be displayed.

• You further restrict the groups on the basis of a
limiting condition.

SELECT [column,] group_function(column)...
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING having_expression]
[ORDER BY column];

The HAVING Clause
Groups are formed and group functions are calculated before the HAVING clause is applied to
the groups. The HAVING clause can precede the GROUP BY clause, but it is recommended that
you place the GROUP BY clause first because it is more logical.
The Oracle server performs the following steps when you use the HAVING clause:

1. Groups rows
2. Applies the group functions to the groups and displays the groups that match the criteria in

the HAVING clause

Oracle Database 10g: SQL Fundamentals II 4-6

4-6 Copyright © 2004, Oracle. All rights reserved.

GROUP BY with ROLLUP and
CUBE Operators

• Use ROLLUP or CUBE with GROUP BY to produce
superaggregate rows by cross-referencing
columns.

• ROLLUP grouping produces a result set containing
the regular grouped rows and the subtotal values.

• CUBE grouping produces a result set containing
the rows from ROLLUP and cross-tabulation rows.

GROUP BY with the ROLLUP and CUBE Operators
You specify ROLLUP and CUBE operators in the GROUP BY clause of a query. ROLLUP
grouping produces a result set containing the regular grouped rows and subtotal rows. The CUBE
operation in the GROUP BY clause groups the selected rows based on the values of all possible
combinations of expressions in the specification and returns a single row of summary
information for each group. You can use the CUBE operator to produce cross-tabulation rows.
Note: When working with ROLLUP and CUBE, make sure that the columns following the
GROUP BY clause have meaningful, real-life relationships with each other; otherwise the
operators return irrelevant information.

Oracle Database 10g: SQL Fundamentals II 4-7

4-7 Copyright © 2004, Oracle. All rights reserved.

ROLLUP Operator

• ROLLUP is an extension to the GROUP BY clause.
• Use the ROLLUP operation to produce cumulative

aggregates, such as subtotals.
SELECT [column,] group_function(column). . .
FROM table
[WHERE condition]
[GROUP BY [ROLLUP] group_by_expression]
[HAVING having_expression];
[ORDER BY column];

The ROLLUP Operator
The ROLLUP operator delivers aggregates and superaggregates for expressions within a GROUP
BY statement. The ROLLUP operator can be used by report writers to extract statistics and
summary information from result sets. The cumulative aggregates can be used in reports, charts,
and graphs.
The ROLLUP operator creates groupings by moving in one direction, from right to left, along the
list of columns specified in the GROUP BY clause. It then applies the aggregate function to these
groupings.

Note
• To produce subtotals in n dimensions (that is, n columns in the GROUP BY clause) without

a ROLLUP operator, n+1 SELECT statements must be linked with UNION ALL. This
makes the query execution inefficient, because each of the SELECT statements causes
table access. The ROLLUP operator gathers its results with just one table access. The
ROLLUP operator is useful when there are many columns involved in producing the
subtotals.

• Subtotals and totals are produced with ROLLUP. CUBE produces totals as well but
effectively rolls up in each possible direction, producing cross-tabular data.

Oracle Database 10g: SQL Fundamentals II 4-8

4-8 Copyright © 2004, Oracle. All rights reserved.

ROLLUP Operator: Example

SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 60
GROUP BY ROLLUP(department_id, job_id);

3

1

2

Example of a ROLLUP Operator
In the example on the slide:

• Total salaries for every job ID within a department for those departments whose
department ID is less than 60 are displayed by the GROUP BY clause.

• The ROLLUP operator displays:
- Total salary for each department whose department ID is less than 60
- Total salary for all departments whose department ID is less than 60, irrespective of

the job IDs
In this example, 1 indicates a group totaled by both DEPARTMENT_ID and JOB_ID, 2 indicates
a group totaled only by DEPARTMENT_ID, and 3 indicates the grand total.
The ROLLUP operator creates subtotals that roll up from the most detailed level to a grand total,
following the grouping list specified in the GROUP BY clause. First, it calculates the standard
aggregate values for the groups specified in the GROUP BY clause (in the example, the sum of
salaries grouped on each job within a department). Then it creates progressively higher-level
subtotals, moving from right to left through the list of grouping columns. (In the example, the
sum of salaries for each department is calculated, followed by the sum of salaries for all
departments.)

• Given n expressions in the ROLLUP operator of the GROUP BY clause, the operation
results in n + 1 (in this case 2 + 1 = 3) groupings.

• Rows based on the values of the first n expressions are called rows or regular rows and the
others are called superaggregate rows.

Oracle Database 10g: SQL Fundamentals II 4-9

4-9 Copyright © 2004, Oracle. All rights reserved.

CUBE Operator

• CUBE is an extension to the GROUP BY clause.
• You can use the CUBE operator to produce cross-

tabulation values with a single SELECT statement.

SELECT [column,] group_function(column)...
FROM table
[WHERE condition]
[GROUP BY [CUBE] group_by_expression]
[HAVING having_expression]
[ORDER BY column];

The CUBE Operator
The CUBE operator is an additional switch in the GROUP BY clause in a SELECT statement.
The CUBE operator can be applied to all aggregate functions, including AVG, SUM, MAX, MIN,
and COUNT. It is used to produce result sets that are typically used for cross-tabular reports.
Whereas ROLLUP produces only a fraction of possible subtotal combinations, CUBE produces
subtotals for all possible combinations of groupings specified in the GROUP BY clause, and a
grand total.
The CUBE operator is used with an aggregate function to generate additional rows in a result set.
Columns included in the GROUP BY clause are cross-referenced to produce a superset of groups.
The aggregate function specified in the select list is applied to these groups to produce summary
values for the additional superaggregate rows. The number of extra groups in the result set is
determined by the number of columns included in the GROUP BY clause.
In fact, every possible combination of the columns or expressions in the GROUP BY clause is
used to produce superaggregates. If you have n columns or expressions in the GROUP BY
clause, there will be 2n possible superaggregate combinations. Mathematically, these
combinations form an n-dimensional cube, which is how the operator got its name.
By using application or programming tools, these superaggregate values can then be fed into
charts and graphs that convey results and relationships visually and effectively.

Oracle Database 10g: SQL Fundamentals II 4-10

4-10 Copyright © 2004, Oracle. All rights reserved.

CUBE Operator: Example

SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 60
GROUP BY CUBE (department_id, job_id) ;

1

2

3

4

Example of a CUBE Operator
The output of the SELECT statement in the example can be interpreted as follows:

• The total salary for every job within a department (for those departments whose department
ID is less than 60) is displayed by the GROUP BY clause.

• The total salary for those departments whose department ID is less than 60.
• The total salary for every job irrespective of the department.
• Total salary for those departments whose department ID is less than 60, irrespective of the

job titles.
In this example, 1 indicates the grand total. 2 indicates the rows totaled by JOB_ID alone. 3
indicates some of the rows totaled by DEPARTMENT_ID and JOB_ID. 4 indicates some of the
rows totaled by DEPARTMENT_ID alone.
The CUBE operator has also performed the ROLLUP operation to display the subtotals for those
departments whose department ID is less than 60 and the total salary for those departments
whose department ID is less than 60, irrespective of the job titles. Additionally, the CUBE
operator displays the total salary for every job irrespective of the department.
Note: Similar to the ROLLUP operator, producing subtotals in n dimensions (that is, n columns
in the GROUP BY clause) without a CUBE operator requires that 2n SELECT statements be
linked with UNION ALL. Thus, a report with three dimensions requires 23 = 8 SELECT
statements to be linked with UNION ALL.

Oracle Database 10g: SQL Fundamentals II 4-11

4-11 Copyright © 2004, Oracle. All rights reserved.

GROUPING Function

The GROUPING function:
• Is used with either the CUBE or ROLLUP operator
• Is used to find the groups forming the subtotal in

a row
• Is used to differentiate stored NULL values from

NULL values created by ROLLUP or CUBE
• Returns 0 or 1
SELECT [column,] group_function(column) .. ,

GROUPING(expr)
FROM table
[WHERE condition]
[GROUP BY [ROLLUP][CUBE] group_by_expression]
[HAVING having_expression]
[ORDER BY column];

The GROUPING Function
The GROUPING function can be used with either the CUBE or ROLLUP operator to help you
understand how a summary value has been obtained.
The GROUPING function uses a single column as its argument. The expr in the GROUPING
function must match one of the expressions in the GROUP BY clause. The function returns a
value of 0 or 1.
The values returned by the GROUPING function are useful to:

• Determine the level of aggregation of a given subtotal; that is, the group or groups on
which the subtotal is based

• Identify whether a NULL value in the expression column of a row of the result set
indicates:

- A NULL value from the base table (stored NULL value)
- A NULL value created by ROLLUP or CUBE (as a result of a group function on that

expression)
A value of 0 returned by the GROUPING function based on an expression indicates one of the
following:

• The expression has been used to calculate the aggregate value.
• The NULL value in the expression column is a stored NULL value.

A value of 1 returned by the GROUPING function based on an expression indicates one of the
following:

• The expression has not been used to calculate the aggregate value.
• The NULL value in the expression column is created by ROLLUP or CUBE as a result of

grouping.

Oracle Database 10g: SQL Fundamentals II 4-12

4-12 Copyright © 2004, Oracle. All rights reserved.

GROUPING Function: Example
SELECT department_id DEPTID, job_id JOB,

SUM(salary),
GROUPING(department_id) GRP_DEPT,
GROUPING(job_id) GRP_JOB

FROM employees
WHERE department_id < 50
GROUP BY ROLLUP(department_id, job_id);

1
2

3

Example of a GROUPING Function
In the example on the slide, consider the summary value 4400 in the first row (labeled 1). This
summary value is the total salary for the job ID of AD_ASST within department 10. To calculate
this summary value, both the DEPARTMENT_ID and JOB_ID columns have been taken into
account. Thus, a value of 0 is returned for both the GROUPING(department_id) and
GROUPING(job_id)expressions.
Consider the summary value 4400 in the second row (labeled 2). This value is the total salary for
department 10 and has been calculated by taking into account the DEPARTMENT_ID column;
thus, a value of 0 has been returned by GROUPING(department_id). Because the JOB_ID
column has not been taken into account to calculate this value, a value of 1 has been returned for
GROUPING(job_id). You can observe similar output in the fifth row.
In the last row, consider the summary value 54800 (labeled 3). This is the total salary for those
departments whose department ID is less than 50 and all job titles. To calculate this summary
value, neither of the DEPARTMENT_ID and JOB_ID columns have been taken into account.
Thus a value of 1 is returned for both the GROUPING(department_id) and
GROUPING(job_id)expressions.

Oracle Database 10g: SQL Fundamentals II 4-13

4-13 Copyright © 2004, Oracle. All rights reserved.

GROUPING SETS

• GROUPING SETS syntax is used to define multiple
groupings in the same query.

• All groupings specified in the GROUPING SETS
clause are computed and the results of individual
groupings are combined with a UNION ALL
operation.

• Grouping set efficiency:
– Only one pass over the base table is required.
– There is no need to write complex UNION

statements.
– The more elements GROUPING SETS has, the greater

the performance benefit.

GROUPING SETS
GROUPING SETS is a further extension of the GROUP BY clause that you can use to specify
multiple groupings of data. Doing so facilitates efficient aggregation and, therefore, facilitates
analysis of data across multiple dimensions.
A single SELECT statement can now be written using GROUPING SETS to specify various
groupings (which can also include ROLLUP or CUBE operators), rather than multiple SELECT
statements combined by UNION ALL operators. For example:

SELECT department_id, job_id, manager_id, AVG(salary)
FROM employees
GROUP BY
GROUPING SETS
((department_id, job_id, manager_id),
(department_id, manager_id),(job_id, manager_id));

This statement calculates aggregates over three groupings:
(department_id, job_id, manager_id), (department_id,
manager_id)and (job_id, manager_id)

Without this feature, multiple queries combined together with UNION ALL are required to
obtain the output of the preceding SELECT statement. A multiquery approach is inefficient,
because it requires multiple scans of the same data.

Oracle Database 10g: SQL Fundamentals II 4-14

GROUPING SETS (continued)
Compare the previous example with the following alternative:

SELECT department_id, job_id, manager_id, AVG(salary)
FROM employees
GROUP BY CUBE(department_id, job_id, manager_id);

This statement computes all the 8 (2 *2 *2) groupings, though only the groups
(department_id, job_id, manager_id), (department_id, manager_id),
and (job_id, manager_id)are of interest to you.
Another alternative is the following statement:

SELECT department_id, job_id, manager_id, AVG(salary)
FROM employees
GROUP BY department_id, job_id, manager_id
UNION ALL
SELECT department_id, NULL, manager_id, AVG(salary)
FROM employees
GROUP BY department_id, manager_id
UNION ALL
SELECT NULL, job_id, manager_id, AVG(salary)
FROM employees
GROUP BY job_id, manager_id;

This statement requires three scans of the base table, which makes it inefficient.
CUBE and ROLLUP can be thought of as grouping sets with very specific semantics. The
following equivalencies show this fact:

GROUPING SETS ((a, b, c), (a, b),(a), ())ROLLUP(a, b,c)

is equivalent to

GROUPING SETS
((a, b, c), (a, b), (a, c), (b, c),
(a), (b), (c), ())

CUBE(a, b, c)
is equivalent to

Oracle Database 10g: SQL Fundamentals II 4-15

4-15 Copyright © 2004, Oracle. All rights reserved.

GROUPING SETS: Example
SELECT department_id, job_id,

manager_id,avg(salary)
FROM employees
GROUP BY GROUPING SETS
((department_id,job_id), (job_id,manager_id));

…

1

…
2

GROUPING SETS: Example
The query on the slide calculates aggregates over two groupings. The table is divided into the
following groups:

• Job ID, Manager ID
• Department ID, Job ID

The average salaries for each of these groups are calculated. The result set displays the average
salary for each of the two groups.
In the output, the group marked as 1 can be interpreted as:

• The average salary of all employees with the job ID AD_VP under manager 100 is 17000.
• The average salary of all employees with the job ID AC_MGR under manager 101 is 12000,

and so on.
The group marked as 2 in the output is interpreted as:

• The average salary of all employees with the job ID FI_MGR in department 100 is 12000.
• The average salary of all employees with the job ID FI_ACCOUNT in department 100 is

7920, and so on.

Oracle Database 10g: SQL Fundamentals II 4-16

GROUPING SETS: Example (continued)
The example on the slide can also be written as:

SELECT department_id, job_id, NULL as manager_id,
AVG(salary) as AVGSAL

FROM employees
GROUP BY department_id, job_id
UNION ALL
SELECT NULL, job_id, manager_id, avg(salary) as AVGSAL
FROM employees
GROUP BY job_id, manager_id;

In the absence of an optimizer that looks across query blocks to generate the execution plan, the
preceding query would need two scans of the base table, EMPLOYEES. This could be very
inefficient. Therefore, the usage of the GROUPING SETS statement is recommended.

Oracle Database 10g: SQL Fundamentals II 4-17

4-17 Copyright © 2004, Oracle. All rights reserved.

Composite Columns

• A composite column is a collection of columns
that are treated as a unit.
ROLLUP (a, , d)

• Use parentheses within the GROUP BY clause to
group columns, so that they are treated as a unit
while computing ROLLUP or CUBE operations.

• When used with ROLLUP or CUBE, composite
columns would require skipping aggregation
across certain levels.

(b,c)

Composite Columns
A composite column is a collection of columns that are treated as a unit during the computation
of groupings. You specify the columns in parentheses as in the following statement:

ROLLUP (a, (b, c), d)

Here, (b,c) forms a composite column and is treated as a unit. In general, composite columns
are useful in ROLLUP, CUBE, and GROUPING SETS. For example, in CUBE or ROLLUP,
composite columns would require skipping aggregation across certain levels.
That is, GROUP BY ROLLUP(a, (b, c))is equivalent to

GROUP BY a, b, c UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Here, (b, c) is treated as a unit and ROLLUP is not applied across (b, c). It is as if you have
an alias, for example z, for (b, c), and the GROUP BY expression reduces to
GROUP BY ROLLUP(a, z).
Note: GROUP BY() is typically a SELECT statement with NULL values for the columns a
and b and only the aggregate function. This is generally used for generating grand totals.

SELECT NULL, NULL, aggregate_col
FROM <table_name>
GROUP BY ();

Oracle Database 10g: SQL Fundamentals II 4-18

Composite Columns (continued)
Compare this with the normal ROLLUP as in:

GROUP BY ROLLUP(a, b, c)

which would be
GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNION ALL
GROUP BY ()

Similarly,
GROUP BY CUBE((a, b), c)

would be equivalent to
GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY c UNION ALL
GROUP By ()

The following table shows grouping sets specification and the equivalent GROUP BY
specification.

GROUP BY a UNION ALL
GROUP BY b UNION ALL
GROUP BY ()

GROUP BY GROUPING SETS(a, (b), ())

GROUP BY a UNION ALL
GROUP BY ROLLUP(b, c)

GROUP BY GROUPING SETS
(a,ROLLUP(b, c))
(The GROUPING SETS expression has a composite
column.)

GROUP BY a, b, cGROUP BY GROUPING SETS((a, b, c))

GROUP BY a UNION ALL
GROUP BY b UNION ALL
GROUP BY b, c

GROUP BY GROUPING SETS(a, b,(b, c))
(The GROUPING SETS expression has a composite
column.)

GROUP BY a UNION ALL
GROUP BY b UNION ALL
GROUP BY c

GROUP BY GROUPING SETS(a, b, c)

Equivalent GROUP BY StatementsGROUPING SETS Statements

Oracle Database 10g: SQL Fundamentals II 4-19

4-19 Copyright © 2004, Oracle. All rights reserved.

Composite Columns: Example

SELECT department_id, job_id, manager_id,
SUM(salary)

FROM employees
GROUP BY ROLLUP(department_id,(job_id, manager_id));

…
2

3

4

1

Composite Columns: Example
Consider the example:

SELECT department_id, job_id,manager_id, SUM(salary)
FROM employees
GROUP BY ROLLUP(department_id,job_id, manager_id);

This query results in the Oracle server computing the following groupings:
1. (job_id, manager_id)
2. (department_id, job_id, manager_id)
3. (department_id)
4. Grand total

If you are only interested in specific groups, you cannot limit the calculation to those groupings
without using composite columns. With composite columns, this is possible by treating JOB_ID
and MANAGER_ID columns as a single unit while rolling up. Columns enclosed in parentheses
are treated as a unit while computing ROLLUP and CUBE. This is illustrated in the example on
the slide. By enclosing the JOB_ID and MANAGER_ID columns in parentheses, you indicate to
the Oracle server to treat JOB_ID and MANAGER_ID as a single unit, that is a composite
column.

Oracle Database 10g: SQL Fundamentals II 4-20

Composite Columns: Example (continued)
The example on the slide computes the following groupings:
• (department_id, job_id, manager_id)
• (department_id)
• ()

The example on the slide displays the following:
• Total salary for every job , and manager (labeled 1)
• Total salary for every department, job , and manager (labeled 2)
• Total salary for every department (labeled 3)
• Grand total (labeled 4)

The example on the slide can also be written as:
SELECT department_id, job_id, manager_id, SUM(salary)
FROM employees
GROUP BY department_id,job_id, manager_id
UNION ALL
SELECT department_id, TO_CHAR(NULL),TO_NUMBER(NULL), SUM(salary)
FROM employees
GROUP BY department_id
UNION ALL
SELECT TO_NUMBER(NULL), TO_CHAR(NULL),TO_NUMBER(NULL), SUM(salary)
FROM employees
GROUP BY ();

In the absence of an optimizer that looks across query blocks to generate the execution plan, the
preceding query would need three scans of the base table, EMPLOYEES. This could be very
inefficient. Therefore, the use of composite columns is recommended.

Oracle Database 10g: SQL Fundamentals II 4-21

4-21 Copyright © 2004, Oracle. All rights reserved.

Concatenated Groupings

• Concatenated groupings offer a concise way to
generate useful combinations of groupings.

• To specify concatenated grouping sets, you
separate multiple grouping sets, ROLLUP, and
CUBE operations with commas so that the Oracle
server combines them into a single GROUP BY
clause.

• The result is a cross-product of groupings from
each grouping set.

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

Concatenated Columns
Concatenated groupings offer a concise way to generate useful combinations of groupings. The
concatenated groupings are specified by listing multiple grouping sets, cubes, and rollups, and
separating them with commas. The following is an example of concatenated grouping sets:
GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

This SQL example defines the following groupings:
(a, c), (a, d), (b, c), (b, d)

Concatenation of grouping sets is very helpful for these reasons:
• Ease of query development: You need not manually enumerate all groupings.
• Use by applications: SQL generated by OLAP applications often involves concatenation

of grouping sets, with each grouping set defining groupings needed for a dimension.

Oracle Database 10g: SQL Fundamentals II 4-22

4-22 Copyright © 2004, Oracle. All rights reserved.

…

…

…

Concatenated Groupings: Example
SELECT department_id, job_id, manager_id,

SUM(salary)
FROM employees
GROUP BY department_id,

ROLLUP(job_id),
CUBE(manager_id);

1

2

3

4 5

Concatenated Groupings: Example
The example on the slide results in the following groupings:
• (job_id, manager_id) (1)
• (department_id,job_id, manager_id) (2)
• (job_id)(3)
• (department_id,manager_id)(4)
• (department_id) (5)

The total salary for each of these groups is calculated.

Oracle Database 10g: SQL Fundamentals II 4-23

4-23 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use
the:
• ROLLUP operation to produce subtotal values
• CUBE operation to produce cross-tabulation values
• GROUPING function to identify the row values

created by ROLLUP or CUBE
• GROUPING SETS syntax to define multiple

groupings in the same query
• GROUP BY clause to combine expressions in

various ways:
– Composite columns
– Concatenated grouping sets

Summary
• ROLLUP and CUBE are extensions of the GROUP BY clause.
• ROLLUP is used to display subtotal and grand total values.
• CUBE is used to display cross-tabulation values.
• The GROUPING function enables you to determine whether a row is an aggregate produced

by a CUBE or ROLLUP operator.
• With the GROUPING SETS syntax, you can define multiple groupings in the same query.

GROUP BY computes all the groupings specified and combines them with UNION ALL.
• Within the GROUP BY clause, you can combine expressions in various ways:

- To specify composite columns, you group columns within parentheses so that the
Oracle server treats them as a unit while computing ROLLUP or CUBE operations.

- To specify concatenated grouping sets, you separate multiple grouping sets, ROLLUP,
and CUBE operations with commas so that the Oracle server combines them into a
single GROUP BY clause. The result is a cross-product of groupings from each
grouping set.

Oracle Database 10g: SQL Fundamentals II 4-24

4-24 Copyright © 2004, Oracle. All rights reserved.

Practice 4: Overview

This practice covers using:
• ROLLUP operators
• CUBE operators
• GROUPING functions
• GROUPING SETS

Practice 4: Overview
In this practice, you use the ROLLUP and CUBE operators as extensions of the GROUP BY
clause. You will also use GROUPING SETS.

Oracle Database 10g: SQL Fundamentals II 4-25

Practice 4
1. Write a query to display the following for those employees whose manager ID is less than

120:
- Manager ID
- Job ID and total salary for every job ID for employees who report to the same

manager
- Total salary of those managers
- Total salary of those managers, irrespective of the job IDs

…

Oracle Database 10g: SQL Fundamentals II 4-26

Practice 4 (continued)
2. Observe the output from question 1. Write a query using the GROUPING function to

determine whether the NULL values in the columns corresponding to the GROUP BY
expressions are caused by the ROLLUP operation.

…

Oracle Database 10g: SQL Fundamentals II 4-27

Practice 4 (continued)
3. Write a query to display the following for those employees whose manager ID is less than

120:
- Manager ID
- Job and total salaries for every job for employees who report to the same manager
- Total salary of those managers
- Cross-tabulation values to display the total salary for every job, irrespective of the

manager
- Total salary irrespective of all job titles

…

Oracle Database 10g: SQL Fundamentals II 4-28

Practice 4 (continued)
4. Observe the output from question 3. Write a query using the GROUPING function to

determine whether the NULL values in the columns corresponding to the GROUP BY
expressions are caused by the CUBE operation.

…

Oracle Database 10g: SQL Fundamentals II 4-29

Practice 4 (continued)
5. Using GROUPING SETS, write a query to display the following groupings:

- department_id, manager_id, job_id
- department_id, job_id
- manager_id, job_id

The query should calculate the sum of the salaries for each of these groups.

…

…

…

Copyright © 2004, Oracle. All rights reserved.

Managing Data in Different Time Zones

Oracle Database 10g: SQL Fundamentals II 5-2

5-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
use the following datetime functions:
• TZ_OFFSET
• FROM_TZ
• TO_TIMESTAMP
• TO_TIMESTAMP_TZ
• TO_YMINTERVAL
• TO_DSINTERVAL

• CURRENT_DATE
• CURRENT_TIMESTAMP
• LOCALTIMESTAMP
• DBTIMEZONE
• SESSIONTIMEZONE
• EXTRACT

Objectives
This lesson addresses some of the datetime functions available in the Oracle database.

Oracle Database 10g: SQL Fundamentals II 5-3

5-3 Copyright © 2004, Oracle. All rights reserved.

Time Zones

-08:00

The image represents the time for
each time zone when Greenwich
time is 12:00.

-05:00

+02:00 +10:00

+07:00

Time Zones
The hours of the day are measured by the turning of the earth. The time of day at any particular
moment depends on where you are. When it is noon in Greenwich, England, it is midnight along
the international date line. The earth is divided into 24 time zones, one for each hour of the day.
The time along the prime meridian in Greenwich, England, is known as Greenwich Mean Time,
or GMT. GMT is the time standard against which all other time zones in the world are
referenced. It is the same all year round and is not affected by summer time or daylight saving
time. The meridian line is an imaginary line that runs from the North Pole to the South Pole. It is
known as zero longitude and it is the line from which all other lines of longitude are measured.
All time is measured relative to GMT and all places have a latitude (their distance north or south
of the equator) and a longitude (their distance east or west of the Greenwich meridian).

Oracle Database 10g: SQL Fundamentals II 5-4

5-4 Copyright © 2004, Oracle. All rights reserved.

TIME_ZONE Session Parameter

TIME_ZONE may be set to:
• An absolute offset
• Database time zone
• OS local time zone
• A named region

ALTER SESSION SET TIME_ZONE = '-05:00';
ALTER SESSION SET TIME_ZONE = dbtimezone;
ALTER SESSION SET TIME_ZONE = local;
ALTER SESSION SET TIME_ZONE = 'America/New_York';

TIME_ZONE Session Parameter
The Oracle database supports storing the time zone in your date and time data, as well as
fractional seconds. The ALTER SESSION command can be used to change time zone values in
a users session. The time zone values can be set to an absolute offset, a named time zone, a
database time zone, or the local time zone.

Oracle Database 10g: SQL Fundamentals II 5-5

5-5 Copyright © 2004, Oracle. All rights reserved.

CURRENT_DATE, CURRENT_TIMESTAMP,
and LOCALTIMESTAMP

• CURRENT_DATE
– Returns the current date from the system
– Has a data type of DATE

• CURRENT_TIMESTAMP
– Returns the current timestamp from the system
– Has a data type of TIMESTAMP WITH TIME ZONE

• LOCALTIMESTAMP
– Returns the current timestamp from user session
– Has a data type of TIMESTAMP

CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP
The CURRENT_DATE and CURRENT_TIMESTAMP functions return the current date and
current timestamp, respectively. The data type of CURRENT_DATE is DATE. The data type of
CURRENT_TIMESTAMP is TIMESTAMP WITH TIME ZONE. The values returned display the
time zone displacement of the SQL session executing the functions. The time zone displacement
is the difference (in hours and minutes) between local time and UTC. The TIMESTAMP WITH
TIME ZONE data type has the format:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The
default is 6.
The LOCALTIMESTAMP function returns the current date and time in the session time zone. The
difference between LOCALTIMESTAMP and CURRENT_TIMESTAMP is that
LOCALTIMESTAMP returns a TIMESTAMP value, whereas CURRENT_TIMESTAMP returns a
TIMESTAMP WITH TIME ZONE value.
These functions are NLS sensitive, that is, the results will be in the current NLS calendar and
datetime formats.

Oracle Database 10g: SQL Fundamentals II 5-6

5-6 Copyright © 2004, Oracle. All rights reserved.

CURRENT_DATE

Display the current date and time in the session’s time
zone.

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

ALTER SESSION SET TIME_ZONE = '-5:0';
SELECT SESSIONTIMEZONE, CURRENT_DATE FROM DUAL;

ALTER SESSION
SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

CURRENT_DATE

The CURRENT_DATE function returns the current date in the session's time zone. The return
value is a date in the Gregorian calendar.
The examples on the slide illustrate that CURRENT_DATE is sensitive to the session time zone.
In the first example, the session is altered to set the TIME_ZONE parameter to –5:0. The
TIME_ZONE parameter specifies the default local time zone displacement for the current SQL
session. TIME_ZONE is a session parameter only, not an initialization parameter. The
TIME_ZONE parameter is set as follows:

TIME_ZONE = '[+ | -] hh:mm'

The format mask ([+ | -] hh:mm) indicates the hours and minutes before or after UTC
(Coordinated Universal Time, formerly known as Greenwich Mean Time).
Observe in the output that the value of CURRENT_DATE changes when the TIME_ZONE
parameter value is changed to –8:0 in the second example.
Note: The ALTER SESSION command sets the date format of the session to
'DD-MON-YYYY HH24:MI:SS' that is day of month (1-31)-abbreviated name of month-4-
digit year hour of day (0-23):minute (0-59):second (0-59).

Oracle Database 10g: SQL Fundamentals II 5-7

5-7 Copyright © 2004, Oracle. All rights reserved.

CURRENT_TIMESTAMP

Display the current date and fractional time in the
session’s time zone.

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP
FROM DUAL;

ALTER SESSION SET TIME_ZONE = '-5:0';
SELECT SESSIONTIMEZONE, CURRENT_TIMESTAMP
FROM DUAL;

CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP function returns the current date and time in the session time zone,
as a value of the data type TIMESTAMP WITH TIME ZONE. The time zone displacement
reflects the current local time of the SQL session. The syntax of the CURRENT_TIMESTAMP
function is:

CURRENT_TIMESTAMP (precision)

where precision is an optional argument that specifies the fractional second precision of the
time value returned. If you omit precision, the default is 6.
The examples on the slide illustrate that CURRENT_TIMESTAMP is sensitive to the session time
zone. In the first example, the session is altered to set the TIME_ZONE parameter to –5:0.
Observe in the output that the value of CURRENT_TIMESTAMP changes when the TIME_ZONE
parameter value is changed to –8:0 in the second example.

Oracle Database 10g: SQL Fundamentals II 5-8

5-8 Copyright © 2004, Oracle. All rights reserved.

LOCALTIMESTAMP

• Display the current date and time in the session’s
time zone in a value of TIMESTAMP data type.

• LOCALTIMESTAMP returns a TIMESTAMP value,
whereas CURRENT_TIMESTAMP returns a
TIMESTAMP WITH TIME ZONE value.

ALTER SESSION SET TIME_ZONE = '-5:0';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

ALTER SESSION SET TIME_ZONE = '-8:0';
SELECT CURRENT_TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

LOCALTIMESTAMP

The LOCALTIMESTAMP function returns the current date and time in the session time zone
LOCALTIMESTAMP returns a TIMESTAMP value. The syntax of the LOCAL_TIMESTAMP
function is:

LOCAL_TIMESTAMP (TIMESTAMP_precision)

Where, TIMESTAMP precision is an optional argument that specifies the fractional second
precision of the TIMESTAMP value returned.
The examples on the slide illustrates the difference between LOCALTIMESTAMP and
CURRENT_TIMESTAMP. Observe that the LOCALTIMESTAMP does not display the time zone
value, whereas the CURRENT_TIMESTAMP does.

Oracle Database 10g: SQL Fundamentals II 5-9

5-9 Copyright © 2004, Oracle. All rights reserved.

DBTIMEZONE and SESSIONTIMEZONE

• Display the value of the database time zone.

• Display the value of the session’s time zone.

SELECT DBTIMEZONE FROM DUAL;

SELECT SESSIONTIMEZONE FROM DUAL;

DBTIMEZONE and SESSIONTIMEZONE
The DBA sets the database's default time zone by specifying the SET TIME_ZONE clause of
the CREATE DATABASE statement. If omitted, the default database time zone is the operating
system time zone. The database time zone cannot be changed for a session with an ALTER
SESSION statement.
The DBTIMEZONE function returns the value of the database time zone. The return type is a
time zone offset (a character type in the format '[+|-]TZH:TZM') or a time zone region name,
depending on how the user specified the database time zone value in the most recent CREATE
DATABASE or ALTER DATABASE statement. The example on the slide shows that the database
time zone is set to "–05:00,"as the TIME_ZONE parameter is in the format:

TIME_ZONE = '[+ | -] hh:mm'

The SESSIONTIMEZONE function returns the value of the current session’s time zone. The
return type is a time zone offset (a character type in the format '[+|-]TZH:TZM') or a time
zone region name, depending on how the user specified the session time zone value in the most
recent ALTER SESSION statement. The example on the slide shows that the session time zone
is offset to UTC by –8 hours. Observe that the database time zone is different from the current
session’s time zone.

Oracle Database 10g: SQL Fundamentals II 5-10

5-10 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Data Type

• The TIMESTAMP data type is an extension of the
DATE data type.

• It stores the year, month, and day of the DATE data
type, plus hour, minute, and second values,
as well as the fractional second value.

• Variations in TIMESTAMP are:
– TIMESTAMP
[(fractional_seconds_precision)]_

– TIMESTAMP
[(fractional_seconds_precision)]_
WITH TIME ZONE

– TIMESTAMP
[(fractional_seconds_precision)]_
WITH LOCAL TIME ZONE

Datetime Data Types
The TIMESTAMP data type contains the datetime fields YEAR, MONTH, DAY, HOUR, MINUTE,
and SECOND and fractional seconds.
The TIMESTAMP WITH TIME ZONE data type contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and TIMEZONE_MINUTE and fractional
seconds.
The TIMESTAMP WITH LOCAL TIME ZONE data type contains same information as the
TIMESTAMP data type, except that the data is normalized to the database time zone when
stored, and adjusted to match the client's time zone when retrieved.
Note: Fractional second precision specifies the number of digits in the fractional part of the
SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

Oracle Database 10g: SQL Fundamentals II 5-11

5-11 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Data Types

Same as the TIMESTAMP data type;
also includes a a time zone offset in
its value

TIMESTAMP WITH LOCAL
TIME ZONE

Same as the TIMESTAMP data type;
also includes:
TimeZone_Hour, and
TimeZone_Minute or
TimeZone_Region

TIMESTAMP WITH TIME
ZONE

Year, Month, Day, Hour, Minute,
Second with fractional secondsTIMESTAMP

FieldsData Type

TIMESTAMP Data Types
TIMESTAMP (fractional_seconds_ precision)

This data type contains the year, month, and day values of date, as well as hour, minute, and
second values of time, where significant fractional seconds precision is the number of digits in
the fractional part of the SECOND datetime field. The accepted values of significant
fractional_seconds_precision are 0 to 9. The default is 6.
TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE

This data type contains all values of TIMESTAMP as well as time zone displacement value.
TIMESTAMP (fractional_seconds_precision) WITH LOCAL TIME ZONE

This data type contains all values of TIMESTAMP, with the following exceptions:
• Data is normalized to the database time zone when it is stored in the database.
• When the data is retrieved, users see the data in the session time zone.

Oracle Database 10g: SQL Fundamentals II 5-12

5-12 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Fields

TIMEZONE_MINUTE
–12 to 14TIMEZONE_HOUR
00 to 59.9(N) where 9(N) is precisionSECOND
00 to 59MINUTE
00 to 23HOUR
01 to 31DAY
01 to 12MONTH
–4712 to 9999 (excluding year 0)YEAR

Valid ValuesDatetime Field

00 to 59

TIMESTAMP Fields
Each datetime data type is composed of several of these fields. Datetimes are mutually
comparable and assignable only if they have the same datetime fields.

Oracle Database 10g: SQL Fundamentals II 5-13

5-13 Copyright © 2004, Oracle. All rights reserved.

Difference between DATE and TIMESTAMP

-- when hire_date is
of type DATE

SELECT hire_date
FROM emp5;

ALTER TABLE emp5
MODIFY hire_date TIMESTAMP;

SELECT hire_date
FROM emp5;

BA

…
…

TIMESTAMP Data Type: Example
On the slide, example A shows the data from the hire_date column of the EMP5 table when
the data type of the column is DATE. In example B, the table is altered and the data type of the
hire_date column is made into TIMESTAMP. The output shows the differences in display.
You can convert from DATE to TIMESTAMP when the column has data, but you cannot convert
from DATE or TIMESTAMP to TIMESTAMP WITH TIME ZONE unless the column is empty.
You can specify the fractional seconds precision for timestamp. If none is specified, as in the
above example, then it defaults to 6.
For example, the following statement sets the fractional seconds precision as 7:
ALTER TABLE emp5
MODIFY hire_date TIMESTAMP(7);

Note: The Oracle date data type by default appears as shown in this example. However, the date
data type also contains additional information such as hours, minutes, seconds, a.m., and p.m. To
obtain the date in this format, you can apply a format mask or a function to the date value.

Oracle Database 10g: SQL Fundamentals II 5-14

5-14 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH TIME ZONE Data Type

• TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone
displacement in its value.

• The time zone displacement is the difference,
in hours and minutes, between local time and
UTC.

• It is specified as:
TIMESTAMP[(fractional_seconds_precision)]
WITH TIME ZONE

TIMESTAMP WITH TIME ZONE Data Type
UTC stand for Coordinated Universal Time (formerly Greenwich Mean Time). Two
TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same
instant in UTC, regardless of the TIME ZONE offsets stored in the data. For example:
TIMESTAMP '1999-04-15 8:00:00 -8:00'

is the same as
TIMESTAMP '1999-04-15 11:00:00 -5:00'.

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.
This can also be specified as:
TIMESTAMP '1999-04-15 8:00:00 US/Pacific'

Oracle Database 10g: SQL Fundamentals II 5-15

5-15 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH TIMEZONE: Example

CREATE TABLE web_orders
(ord_id number primary key,
order_date TIMESTAMP WITH TIME ZONE);

INSERT INTO web_orders values
(ord_seq.nextval, current_date);

SELECT * FROM web_orders;

TIMESTAMP WITH TIME ZONE: Example
In the example on the slide, a new table web_orders is created with a column of data type
TIMESTAMP WITH TIME ZONE. This table is populated whenever a web_order is placed.
The timestamp and time zone for the user placing the order is inserted based on the
CURRENT_DATE value. That way when a Web-based company guarantees shipping, they can
estimate their delivery time based on the time zone of the person placing the order.

Oracle Database 10g: SQL Fundamentals II 5-16

5-16 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE

• TIMESTAMP WITH LOCAL TIME ZONE is another
variant of TIMESTAMP that includes a time zone
displacement in its value.

• Data stored in the database is normalized to the
database time zone.

• The time zone displacement is not stored as part
of the column data.

• The Oracle database returns the data in the user’s
local session time zone.

• The TIMESTAMP WITH LOCAL TIME ZONE data
type is specified as follows:

TIMESTAMP[(fractional_seconds_precision)]
WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIMEZONE

Unlike TIMESTAMP WITH TIME ZONE, you can specify columns of type TIMESTAMP
WITH LOCAL TIME ZONE as part of a primary or unique key. The time zone displacement is
the difference (in hours and minutes) between local time and UTC. There is no literal for
TIMESTAMP WITH LOCAL TIME ZONE.

Oracle Database 10g: SQL Fundamentals II 5-17

5-17 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE:
Example

CREATE TABLE shipping (delivery_time TIMESTAMP WITH
LOCAL TIME ZONE);

INSERT INTO shipping VALUES(current_timestamp + 2);

SELECT * FROM shipping;

ALTER SESSION SET TIME_ZONE = 'EUROPE/LONDON';

SELECT * FROM shipping;

TIMESTAMP WITH LOCAL TIME ZONE: Example
In the example on the slide, a new table SHIPPING is created with a column of the data type
TIMESTAMP WITH LOCAL TIME ZONE. This table is populated by inserting two days from
the CURRENT_TIMESTAMP value into it every time an order is placed. The output from the
DATE_TAB table shows that the data is stored without the time zone offset. Then the ALTER
SESSION command is issued to change the time zone to the local time zone at the place of
delivery. A second query on the same table now reflects the data with the local time zone
reflected in the time value, so that the customer can be notified about the expected delivery time.

Oracle Database 10g: SQL Fundamentals II 5-18

5-18 Copyright © 2004, Oracle. All rights reserved.

INTERVAL Data Types

• INTERVAL data types are used to store the
difference between two datetime values.

• There are two classes of intervals:
– Year-month
– Day-time

• The precision of the interval is:
– The actual subset of fields that constitutes an

interval
– Specified in the interval qualifier

Days, Hour, Minute, Second with
fractional secondsINTERVAL DAY TO SECOND

Year, MonthINTERVAL YEAR TO MONTH

FieldsData Type

INTERVAL Data Types
INTERVAL data types are used to store the difference between two datetime values. There are
two classes of intervals: year-month intervals and day-time intervals. A year-month interval is
made up of a contiguous subset of fields of YEAR and MONTH, whereas a day-time interval is
made up of a contiguous subset of fields consisting of DAY, HOUR, MINUTE, and SECOND. The
actual subset of fields that constitute an interval is called the precision of the interval and is
specified in the interval qualifier. Because the number of days in a year are calendar dependent,
the year-month interval is NLS dependent whereas day-time interval is NLS independent.
The interval qualifier may also specify the leading field precision, which is the number of digits
in the leading or only field, and in case the trailing field is SECOND, it may also specify the
fractional seconds precision, which is the number of digits in the fractional part of the SECOND
value. If not specified, the default value for leading field precision is 2 digits, and the default
value for fractional seconds precision is 6 digits.

Oracle Database 10g: SQL Fundamentals II 5-19

INTERVAL Data Types (continued)
INTERVAL YEAR (year_precision) TO MONTH

This data type stores a period of time in years and months, where year_precision is the
number of digits in the YEAR datetime field. The accepted values are 0 to 9. The default is 6.
INTERVAL DAY (day_precision) TO SECOND
(fractional_seconds_precision)

This data type stores a period of time in days, hours, minutes, and seconds, where
day_precision is the maximum number of digits in the DAY datetime field (accepted values
are 0 to 9; the default is 2), and fractional_seconds_precision is the number of digits
in the fractional part of the SECOND field. The accepted values are 0 to 9. The default is 6.

Oracle Database 10g: SQL Fundamentals II 5-20

5-20 Copyright © 2004, Oracle. All rights reserved.

INTERVAL Fields

00 to 59.9(N) where 9(N) is precisionSECOND

00 to 59MINUTE

HOUR

DAY

MONTH

YEAR

INTERVAL Field

00 to 23

Any positive or negative integer

00 to 11

Any positive or negative integer

Valid Values for Interval

INTERVAL Fields
INTERVAL YEAR TO MONTH can have fields of YEAR and MONTH.
INTERVAL DAY TO SECOND can have fields of DAY, HOUR, MINUTE and SECOND.
The actual subset of fields that constitute an item of either type of interval is defined by an
interval qualifier, and this subset is known as the precision of the item.
Year-month intervals are mutually comparable and assignable only with other year-month
intervals, and day-time intervals are mutually comparable and assignable only with other day-
time intervals.

Oracle Database 10g: SQL Fundamentals II 5-21

5-21 Copyright © 2004, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time
using the YEAR and MONTH datetime fields.

• For example:
INTERVAL YEAR [(year_precision)] TO MONTH

'312-2' assigned to INTERVAL YEAR(3) TO MONTH

Indicates an interval of 312 years and 2 months

'312-0' assigned to INTERVAL YEAR(3) TO MONTH

Indicates 312 years and 0 months

'0-3' assigned to INTERVAL YEAR TO MONTH

Indicates an interval of 3 months

INTERVAL YEAR TO MONTH Data Type
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime
fields. Specify INTERVAL YEAR TO MONTH as follows:
INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The default value
of year_precision is 2.
Restriction: The leading field must be more significant than the trailing field. For example,
INTERVAL '0-1' MONTH TO YEAR is not valid.
The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 3
months:
• INTERVAL '123-3' YEAR(3) TO MONTH
• INTERVAL '123' YEAR(3) indicates an interval of 123 years 0 months.
• INTERVAL '3' MONTH indicates an interval of 3 months.

Oracle Database 10g: SQL Fundamentals II 5-22

5-22 Copyright © 2004, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH: Example

CREATE TABLE warranty
(prod_id number, warranty_time INTERVAL YEAR(3)
TO MONTH);

INSERT INTO warranty VALUES (123, INTERVAL '8'
MONTH);

INSERT INTO warranty VALUES (155, INTERVAL '200'
YEAR(3));

INSERT INTO warranty VALUES (678, '200-11');

SELECT * FROM warranty;

INTERVAL YEAR TO MONTH Data Type (continued)
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime
fields. Specify INTERVAL YEAR TO MONTH as follows:
INTERVAL YEAR [(year_precision)] TO MONTH

where year_precision is the number of digits in the YEAR datetime field. The default value
of year_precision is 2.
Restriction: The leading field must be more significant than the trailing field. For example,
INTERVAL '0-1' MONTH TO YEAR is not valid.
The Oracle database supports two interval data types: Interval Year to Month and Interval Day to
Second; the column type, PL/SQL argument, variable, and return type must be one of the two.
However, for interval literals the system recognizes other ANSI interval types such as
INTERVAL '2' YEAR or INTERVAL '10' HOUR. In these cases each interval is converted
to one of the two supported types.
In the above example, a WARRANTY table is created which contains a warranty_time
column that takes the INTERVAL YEAR(3) TO MONTH data type. Different values are
inserted into it to indicate years and months for various products. When these rows are retrieved
from the table, you see a year value displaced by the month value by a (-).

Oracle Database 10g: SQL Fundamentals II 5-23

5-23 Copyright © 2004, Oracle. All rights reserved.

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND
(fractional_seconds_precision)stores a period
of time in days, hours, minutes, and seconds.

• For example:

INTERVAL DAY[(day_precision)] TO Second

INTERVAL '6 03:30:16' DAY TO SECOND

Indicates an interval of 6 days 3 hours 30 minutes
and 16 seconds

INTERVAL '6 00:00:00' DAY TO SECOND

Indicates an interval of 6 days and 0 hours, 0
minutes and 0 seconds

INTERVAL DAY TO SECOND Data Type
INTERVAL DAY (day_precision) TO SECOND
(fractional_seconds_precision) stores a period of time in days, hours, minutes, and
seconds, where day_precision is the maximum number of digits in the DAY datetime field
(accepted values are 0 to 9; the default is 2), and fractional_seconds_precision is the
number of digits in the fractional part of the SECOND field. Accepted values are 0 to 9. The
default is 6.
In the above example, 6 represents the number of days, and 03:30:15 indicates the values for
hours, minutes, and seconds.

Oracle Database 10g: SQL Fundamentals II 5-24

5-24 Copyright © 2004, Oracle. All rights reserved.

INTERVAL DAY TO SECOND
Data Type: Example

CREATE TABLE lab
(exp_id number, test_time INTERVAL DAY(2) TO
SECOND);

INSERT INTO lab VALUES (100012, '90 00:00:00');

INSERT INTO lab VALUES (56098,

INTERVAL '6 03:30:16' DAY TO SECOND);

SELECT * FROM lab;

INTERVAL DAY TO SECOND Data Type: Example
In the above example, you are creating the lab table with a test_time column of data type
INTERVAL DAY TO SECOND. You then insert into it the value “90 00:00:00” to indicate 90
days and 0 hours minutes and seconds and INTERVAL '6 03:30:16' DAY TO SECOND.
The select statement shows how this data is displayed in the database.

Oracle Database 10g: SQL Fundamentals II 5-25

5-25 Copyright © 2004, Oracle. All rights reserved.

EXTRACT

• Display the YEAR component from the SYSDATE.

• Display the MONTH component from the HIRE_DATE
for those employees whose MANAGER_ID is 100.

SELECT EXTRACT (YEAR FROM SYSDATE) FROM DUAL;

SELECT last_name, hire_date,
EXTRACT (MONTH FROM HIRE_DATE)

FROM employees
WHERE manager_id = 100;

EXTRACT

The EXTRACT expression extracts and returns the value of a specified datetime field from a
datetime or interval value expression. You can extract any of the components mentioned in the
following syntax using the EXTRACT function. The syntax of the EXTRACT function is:

SELECT EXTRACT ([YEAR] [MONTH][DAY] [HOUR] [MINUTE][SECOND]
[TIMEZONE_HOUR] [TIMEZONE_MINUTE]
[TIMEZONE_REGION] [TIMEZONE_ABBR]

FROM [datetime_value_expression] [interval_value_expression]);

When you extract a TIMEZONE_REGION or TIMEZONE_ABBR (abbreviation), the value
returned is a string containing the appropriate time zone name or abbreviation. When you extract
any of the other values, the value returned is a date in the Gregorian calendar. When extracting
from a datetime with a time zone value, the value returned is in UTC.
In the first example on the slide, the EXTRACT function is used to extract the YEAR from
SYSDATE. In the second example on the slide, the EXTRACT function is used to extract the
MONTH from HIRE_DATE column of the EMPLOYEES table, for those employees who report to
the manager whose EMPLOYEE_ID is 100.

Oracle Database 10g: SQL Fundamentals II 5-26

5-26 Copyright © 2004, Oracle. All rights reserved.

TZ_OFFSET

• Display the time zone offset for the time zone
'US/Eastern'.

• Display the time zone offset for the time zone
'Canada/Yukon'.

• Display the time zone offset for the time zone
'Europe/London'.

SELECT TZ_OFFSET('US/Eastern') FROM DUAL;

SELECT TZ_OFFSET('Canada/Yukon') FROM DUAL;

SELECT TZ_OFFSET('Europe/London') FROM DUAL;

TZ_OFFSET
The TZ_OFFSET function returns the time zone offset corresponding to the value entered. The
return value is dependent on the date when the statement is executed. For example, if the
TZ_OFFSET function returns a value –08:00, this value indicates that the time zone where the
command was executed is eight hours behind UTC. You can enter a valid time zone name, a
time zone offset from UTC (which simply returns itself), or the keyword SESSIONTIMEZONE
or DBTIMEZONE. The syntax of the TZ_OFFSET function is:

TZ_OFFSET (['time_zone_name'] '[+ | -] hh:mm']
[SESSIONTIMEZONE] [DBTIMEZONE]

The Fold Motor Company has a headquarters in Michigan, USA, which is in US/Eastern time
zone. The company president, Mr. Fold, wants to conduct a conference call with the vice
president of the Canadian operations and the vice president of European operations, who are in
the Canada/Yukon and Europe/London time zones, respectively. Mr. Fold wants to find out the
time in each of these places to make sure that his senior management will be available to attend
the meeting. His secretary, Mr. Scott, helps by issuing the queries shown in the example and gets
the following results:

• The time zone 'US/Eastern' is four hours behind UTC.
• The time zone 'Canada/Yukon' is seven hours behind UTC.
• The time zone 'Europe/London' is one hour ahead of UTC.

Oracle Database 10g: SQL Fundamentals II 5-27

TZ_OFFSET (continued)
For a listing of valid time zone name values, you can query the V$TIMEZONE_NAMES dynamic
performance view.
SELECT * FROM V$TIMEZONE_NAMES;

…

Oracle Database 10g: SQL Fundamentals II 5-28

5-28 Copyright © 2004, Oracle. All rights reserved.

TIMESTAMP Conversion Using FROM_TZ

• Display the TIMESTAMP value '2000-03-28 08:00:00'
as a TIMESTAMP WITH TIME ZONE value.

• Display the TIMESTAMP value '2000-03-28 08:00:00'
as a TIMESTAMP WITH TIME ZONE value for the
time zone region 'Australia/North'.

SELECT FROM_TZ(TIMESTAMP
'2000-03-28 08:00:00','3:00')

FROM DUAL;

SELECT FROM_TZ(TIMESTAMP
'2000-03-28 08:00:00', 'Australia/North')

FROM DUAL;

TIMESTAMP Conversion Using FROM_TZ
The FROM_TZ function converts a TIMESTAMP value to a TIMESTAMP WITH TIME ZONE
value.
The syntax of the FROM_TZ function is as follows:

FROM_TZ(TIMESTAMP timestamp_value, time_zone_value)

where time_zone_value is a character string in the format 'TZH:TZM' or a character
expression that returns a string in TZR (time zone region) with optional TZD format. TZD is an
abbreviated time zone string with daylight saving information. TZR represents the time zone
region in datetime input strings. Examples are 'Australia/North', 'PST' for US/Pacific
standard time and 'PDT' for US/Pacific daylight time and so on. To see a listing of valid values
for the TZR and TZD format elements, query the V$TIMEZONE_NAMES dynamic performance
view.
The example on the slide converts a TIMESTAMP value to TIMESTAMP WITH TIME ZONE.

Oracle Database 10g: SQL Fundamentals II 5-29

5-29 Copyright © 2004, Oracle. All rights reserved.

SELECT
TO_TIMESTAMP_TZ('1999-12-01 11:00:00 -8:00',

'YYYY-MM-DD HH:MI:SS TZH:TZM')
FROM DUAL;

Converting to TIMESTAMP Using
TO_TIMESTAMP and TO_TIMESTAMP_TZ

• Display the character string '2000-12-01 11:00:00'
as a TIMESTAMP value.

• Display the character string '1999-12-01 11:00:00 -
8:00' as a TIMESTAMP WITH TIME ZONE value.

SELECT TO_TIMESTAMP ('2000-12-01 11:00:00',
'YYYY-MM-DD HH:MI:SS')

FROM DUAL;

Converting to TIMESTAMP Using TO_TIMESTAMP and TO_TIMESTAMP_TZ
The TO_TIMESTAMP function converts a string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a value of TIMESTAMP data type. The syntax of the
TO_TIMESTAMP function is:

TO_TIMESTAMP (char,[fmt],['nlsparam'])
The optional fmt specifies the format of char if omitted, the string must be in the default
format of the TIMESTAMP data type. The optional nlsparam specifies the language in which
month and day names, and abbreviations are returned. This argument can have this form:

'NLS_DATE_LANGUAGE = language'
If you omit nlsparams, this function uses the default date language for your session. The
example on the slide converts a character string to a value of TIMESTAMP.
The TO_TIMESTAMP_TZ function converts a string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a value of TIMESTAMP WITH TIME ZONE data type. The syntax
of the TO_TIMESTAMP_TZ function is:

TO_TIMESTAMP_TZ (char,[fmt],['nlsparam'])
The optional fmt specifies the format of char. If omitted, a string must be in the default format
of the TIMESTAMP WITH TIME ZONE data type. The example on the slide converts a
character string to a value of TIMESTAMP WITH TIME ZONE.

Oracle Database 10g: SQL Fundamentals II 5-30

5-30 Copyright © 2004, Oracle. All rights reserved.

Time Interval Conversion with
TO_YMINTERVAL

Display a date that is one year, two months after the
hire date for the employees working in the department
with the DEPARTMENT_ID 20.
SELECT hire_date,

hire_date + TO_YMINTERVAL('01-02') AS
HIRE_DATE_YMININTERVAL

FROM employees
WHERE department_id = 20;

Time Interval Conversion with TO_YMINTERVAL
The TO_YMINTERVAL function converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to an INTERVAL YEAR TO MONTH data type. The INTERVAL
YEAR TO MONTH data type stores a period of time using the YEAR and MONTH datetime fields.
The format of INTERVAL YEAR TO MONTH is as follows:

INTERVAL YEAR [(year_precision)] TO MONTH
where year_precision is the number of digits in the YEAR datetime field. The default value
of year_precision is 2.
The syntax of the TO_YMINTERVAL function is:

TO_YMINTERVAL (char)
where char is the character string to be converted.
The example on the slide calculates a date that is one year and two months after the hire date for
the employees working in the department 20 of the EMPLOYEES table.
A reverse calculation can also be done using the TO_YMINTERVAL function. For example:

SELECT hire_date, hire_date + TO_YMINTERVAL('-02-04') AS
HIRE_DATE_YMINTERVAL

FROM EMPLOYEES WHERE department_id = 20;
Observe that the character string passed to the TO_YMINTERVAL function has a negative value.
The example returns a date that is two years and four months before the hire date for the
employees working in the department 20 of the EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals II 5-31

5-31 Copyright © 2004, Oracle. All rights reserved.

Using TO_DSINTERVAL: Example

TO_DSINTERVAL: Converts a character string to an
INTERVAL DAY TO SECOND data type
SELECT last_name,
TO_CHAR(hire_date, 'mm-dd-yy:hh:mi:ss') hire_date,
TO_CHAR(hire_date +
TO_DSINTERVAL('100 10:00:00'),

'mm-dd-yy:hh:mi:ss') hiredate2
FROM employees;

…

TO_DSINTERVAL
TO_DSINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
data type to an INTERVAL DAY TO SECOND type.
In the above example, the date 100 days and 10 hours after the hire date is obtained.

TO_YMINTERVAL
The TO_YMINTERVAL function converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to an INTERVAL YEAR TO MONTH type.
In the following example, the date one year and two months after the hire date is obtained.
SELECT hire_date, hire_date + TO_YMINTERVAL('01-02') ytm
FROM employees;

HIRE_DATE YTM
--------- ---------
17-JUN-87 17-AUG-88
21-SEP-89 21-NOV-90
13-JAN-93 13-MAR-94
03-JAN-90 03-MAR-91
21-MAY-91 21-JUL-92
…

Oracle Database 10g: SQL Fundamentals II 5-32

5-32 Copyright © 2004, Oracle. All rights reserved.

Daylight Saving Time

• First Sunday in April
– Time jumps from 01:59:59 a.m. to 03:00:00 a.m.
– Values from 02:00:00 a.m. to 02:59:59 a.m. are not

valid.
• Last Sunday in October

– Time jumps from 02:00:00 a.m. to 01:00:01 a.m.
– Values from 01:00:01 a.m. to 02:00:00 a.m. are

ambiguous because they are visited twice.

Daylight Saving Time (DST)
Most western nations advance the clock ahead one hour during the summer months. This period
is called daylight saving time. Daylight saving time lasts from the first Sunday in April to the last
Sunday in October in the most of the United States, Mexico, and Canada. The nations of the
European Union observe daylight saving time, but they call it the summer time period. Europe’s
summer time period begins a week earlier than its North American counterpart, but ends at the
same time.
The Oracle database automatically determines, for any given time zone region, whether daylight
saving time is in effect and returns local time values accordingly. The datetime value is
sufficient for the Oracle database to determine whether daylight saving time is in effect for a
given region in all cases except boundary cases. A boundary case occurs during the period when
daylight saving time goes into or out of effect. For example, in the US-Eastern region, when
daylight saving time goes into effect, the time changes from 01:59:59 a.m. to 3:00:00 a.m. The
one-hour interval between 02:00:00 and 02:59:59 a.m. does not exist. When daylight saving time
goes out of effect, the time changes from 02:00:00 a.m. back to 01:00:01 a.m., and the one-hour
interval between 01:00:01 and 02:00:00 a.m. is repeated.

Oracle Database 10g: SQL Fundamentals II 5-33

Daylight Saving Time (DST) (continued)
ERROR_ON_OVERLAP_TIME

The ERROR_ON_OVERLAP_TIME is a session parameter to notify the system to issue an error
when it encounters a datetime that occurs in the overlapped period and no time zone abbreviation
was specified to distinguish the period.
For example, if daylight saving time ends on October 31, at 02:00:01 a.m. The overlapped
periods were:

• 10/31/2004 01:00:01 a.m. to 10/31/2004 02:00:00 a.m. (EDT)
• 10/31/2004 01:00:01 a.m. to 10/31/2004 02:00:00 a.m. (EST)

If you input a datetime string which occurs in one of these two periods, you need to specify the
time zone abbreviation (for example, EDT or EST) in the input string for the system to
determine the period. Without this time zone abbreviation, the system will do the following:
If the parameter ERROR_ON_OVERLAP_TIME is FALSE, then it assumes that the input time is
standard time (for example, EST). Otherwise, an error is raised.

Oracle Database 10g: SQL Fundamentals II 5-34

5-34 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the
following functions:
• TZ_OFFSET
• FROM_TZ
• TO_TIMESTAMP
• TO_TIMESTAMP_TZ
• TO_YMINTERVAL

• CURRENT_DATE
• CURRENT_TIMESTAMP
• LOCALTIMESTAMP
• DBTIMEZONE
• SESSIONTIMEZONE
• EXTRACT

Summary
This lesson addressed some of the datetime functions available in the Oracle database.

Oracle Database 10g: SQL Fundamentals II 5-35

5-35 Copyright © 2004, Oracle. All rights reserved.

Practice 5: Overview

This practice covers using the datetime functions.

Practice 5: Overview
In this practice, you display time zone offsets, CURRENT_DATE, CURRENT_TIMESTAMP, and
the LOCALTIMESTAMP. You also set time zones and use the EXTRACT function.

Oracle Database 10g: SQL Fundamentals II 5-36

Practice 5
1. Alter the session to set the NLS_DATE_FORMAT to DD-MON-YYYY HH24:MI:SS.
2. a. Write queries to display the time zone offsets (TZ_OFFSET), for the following

time zones.
- US/Pacific-New

- Singapore

- Egypt

b. Alter the session to set the TIME_ZONE parameter value to the time zone offset of
US/Pacific-New.

c. Display the CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP
for this session.

d. Alter the session to set the TIME_ZONE parameter value to the time zone offset of
Singapore.

e. Display the CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP
for this session.
Note: The output might be different, based on the date when the command is
executed.

Note: Observe in the preceding practice that CURRENT_DATE,
CURRENT_TIMESTAMP, and LOCALTIMESTAMP are all sensitive to the session
time zone.

3. Write a query to display the DBTIMEZONE and SESSIONTIMEZONE.

Oracle Database 10g: SQL Fundamentals II 5-37

Practice 5 (continued)
4. Write a query to extract the YEAR from the HIRE_DATE column of the EMPLOYEES

table for those employees who work in department 80.

5. Alter the session to set NLS_DATE_FORMAT to DD-MON-YYYY.

…

Oracle Database 10g: SQL Fundamentals II 5-38

Practice 5 (continued)
6. Examine and run script lab_05_06.sql to create the SAMPLE_DATES table and

populate it.
a. Select from the table and view the data.

b. Modify the data type of the DATE_COL column and change it to TIMESTAMP. Select
from the table to view the data.

c. Try to modify the data type of the DATE_COL column and change it to TIMESTAMP
WITH TIME ZONE. What happens?

7. Create a query to retrieve last names from the EMPLOYEES table and calculate review
status. If the year hired was 2000, display Needs Review for the review status,
otherwise display not this year! Name the review status column Review. Sort the
results by the HIRE_DATE column.
Hint: Use a CASE expression with EXTRACT function to calculate the review status.

…

Oracle Database 10g: SQL Fundamentals II 5-39

Practice 5 (continued)
8. Create a query to print the last names and the number of years of service for each

employee. If the employee has been employed five or more years, then print 5 years
of service. If the employee has been employed 10 or more years, then print 10
years of service. If the employee has been employed 15 or more years, then print
15 years of service. If none of these conditions match, then print maybe next
year! Sort the results by the HIRE_DATE column. Use EMPLOYEES table.
Hint: Use CASE expressions and TO_YMINTERVAL.

…

Copyright © 2004, Oracle. All rights reserved.

Retrieving Data Using Subqueries

Oracle Database 10g: SQL Fundamentals II 6-2

6-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Write a multiple-column subquery
• Use scalar subqueries in SQL
• Solve problems with correlated subqueries
• Update and delete rows using correlated

subqueries
• Use the EXISTS and NOT EXISTS operators
• Use the WITH clause

Objectives
In this lesson, you learn how to write multiple-column subqueries and subqueries in the FROM
clause of a SELECT statement. You also learn how to solve problems by using scalar, correlated
subqueries and the WITH clause.

Oracle Database 10g: SQL Fundamentals II 6-3

6-3 Copyright © 2004, Oracle. All rights reserved.

Multiple-Column Subqueries

Main query
WHERE (MANAGER_ID, DEPARTMENT_ID) IN

Subquery
100 90
102 60
124 50

Each row of the main query is compared to values
from a multiple-row and multiple-column subquery.

Multiple-Column Subqueries
So far you have written single-row subqueries and multiple-row subqueries where only one
column is returned by the inner SELECT statement and this is used to evaluate the expression in
the parent select statement. If you want to compare two or more columns, you must write a
compound WHERE clause using logical operators. Using multiple-column subqueries, you can
combine duplicate WHERE conditions into a single WHERE clause.
Syntax
SELECT column, column, ...
FROM table
WHERE (column, column, ...) IN

(SELECT column, column, ...
FROM table
WHERE condition);

The graphic on the slide illustrates that the values of the MANAGER_ID and DEPARTMENT_ID
from the main query are being compared with the MANAGER_ID and DEPARTMENT_ID values
retrieved by the subquery. Because the number of columns that are being compared are more
than one, the example qualifies as a multiple-column subquery.

Oracle Database 10g: SQL Fundamentals II 6-4

6-4 Copyright © 2004, Oracle. All rights reserved.

Column Comparisons

Column comparisons in a multiple-column subquery
can be:
• Pairwise comparisons
• Nonpairwise comparisons

Pairwise Versus Nonpairwise Comparisons
Column comparisons in a multiple-column subquery can be pairwise comparisons or
nonpairwise comparisons.
In the example on the next slide, a pairwise comparison is executed in the WHERE clause. Each
candidate row in the SELECT statement must have both the same MANAGER_ID and the
DEPARTMENT_ID columns as the employees with the EMPLOYEE_ID 199 or 174.
A multiple-column subquery can also be a nonpairwise comparison. In a nonpairwise
comparison, each of the columns from the WHERE clause of the parent SELECT statement is
individually compared to multiple values retrieved by the inner SELECT statement. The
individual columns can match any of the values retrieved by the inner SELECT statement. But
collectively, all the multiple conditions of the main SELECT statement must be satisfied for the
row to be displayed. The example on the next page illustrates a pairwise comparison.

Oracle Database 10g: SQL Fundamentals II 6-5

6-5 Copyright © 2004, Oracle. All rights reserved.

Pairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager and work in the same
department as the employees with EMPLOYEE_ID 199
or 174.

SELECT employee_id, manager_id, department_id
FROM employees
WHERE (manager_id, department_id) IN

(SELECT manager_id, department_id
FROM employees
WHERE employee_id IN (199,174))

AND employee_id NOT IN (199,174);

Pairwise Comparison Subquery
The example on the slide is that of a multiple-column subquery because the subquery returns
more than one column. It compares the values in the MANAGER_ID column and the
DEPARTMENT_ID column of each row in the EMPLOYEES table with the values in the
MANAGER_ID column and the DEPARTMENT_ID column for the employees with the
EMPLOYEE_ID 199 or 174.
First, the subquery to retrieve the MANAGER_ID and DEPARTMENT_ID values for the
employees with the EMPLOYEE_ID 199 or 174 is executed. These values are compared with the
MANAGER_ID column and the DEPARTMENT_ID column of each row in the EMPLOYEES
table. If the values match, the row is displayed. In the output, the records of the employees with
the EMPLOYEE_ID 199 or 174 will not be displayed. The following is the output of the query
on the slide:

…

Oracle Database 10g: SQL Fundamentals II 6-6

6-6 Copyright © 2004, Oracle. All rights reserved.

Nonpairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager as the employees with
EMPLOYEE_ID 174 or 199 and work in the same
department as the employees with EMPLOYEE_ID 174
or 199.
SELECT employee_id, manager_id, department_id
FROM employees
WHERE manager_id IN

(SELECT manager_id
FROM employees
WHERE employee_id IN (174,199))

AND department_id IN
(SELECT department_id
FROM employees
WHERE employee_id IN (174,199))

AND employee_id NOT IN(174,199);

Nonpairwise Comparison Subquery
The example shows a nonpairwise comparison of the columns. It displays the EMPLOYEE_ID,
MANAGER_ID, and DEPARTMENT_ID of any employee whose manager ID matches any of the
manager IDs of employees whose employee IDs are either 174 or 199 and DEPARTMENT_ID
match any of the department IDs of employees whose employee IDs are either 174 or 199.
First, the subquery to retrieve the MANAGER_ID values for the employees with the
EMPLOYEE_ID 174 or 199 is executed. Similarly, the second subquery to retrieve the
DEPARTMENT_ID values for the employees with the EMPLOYEE_ID 174 or 199 is executed.
The retrieved values of the MANAGER_ID and DEPARTMENT_ID columns are compared with
the MANAGER_ID and DEPARTMENT_ID column for each row in the EMPLOYEES table. If the
MANAGER_ID column of the row in the EMPLOYEES table matches with any of the values of
the MANAGER_ID retrieved by the inner subquery and if the DEPARTMENT_ID column of the
row in the EMPLOYEES table matches with any of the values of the DEPARTMENT_ID
retrieved by the second subquery, the record is displayed. The following is the output of the
query on the slide:

…

Oracle Database 10g: SQL Fundamentals II 6-7

6-7 Copyright © 2004, Oracle. All rights reserved.

Scalar Subquery Expressions

• A scalar subquery expression is a subquery that
returns exactly one column value from one row.

• Scalar subqueries can be used in:
– Condition and expression part of DECODE and CASE
– All clauses of SELECT except GROUP BY

Scalar Subqueries in SQL
A subquery that returns exactly one column value from one row is also referred to as a scalar
subquery. Multiple-column subqueries that are written to compare two or more columns, using a
compound WHERE clause and logical operators, do not qualify as scalar subqueries.
The value of the scalar subquery expression is the value of the select list item of the subquery. If
the subquery returns 0 rows, the value of the scalar subquery expression is NULL. If the subquery
returns more than one row, the Oracle server returns an error. The Oracle server has always
supported the usage of a scalar subquery in a SELECT statement. You can use scalar subqueries
in:

• The condition and expression part of DECODE and CASE
• All clauses of SELECT except GROUP BY
• The SET clause and WHERE clause of an UPDATE statement

However, scalar subqueries are not valid expressions in the following places:
• As default values for columns and hash expressions for clusters
• In the RETURNING clause of DML statements
• As the basis of a function-based index
• In GROUP BY clauses, CHECK constraints, WHEN conditions
• In CONNECT BY clauses
• In statements that are unrelated to queries, such as CREATE PROFILE

Oracle Database 10g: SQL Fundamentals II 6-8

6-8 Copyright © 2004, Oracle. All rights reserved.

Scalar Subqueries: Examples

• Scalar subqueries in CASE expressions
SELECT employee_id, last_name,

(CASE
WHEN department_id =

(SELECT department_id
FROM departments
WHERE location_id = 1800)

THEN 'Canada' ELSE 'USA' END) location
FROM employees;

SELECT employee_id, last_name
FROM employees e
ORDER BY (SELECT department_name

FROM departments d
WHERE e.department_id = d.department_id);

20

• Scalar subqueries in ORDER BY clause

Scalar Subqueries: Examples
The first example on the slide demonstrates that scalar subqueries can be used in CASE
expressions. The inner query returns the value 20, which is the department ID of the department
whose location ID is 1800. The CASE expression in the outer query uses the result of the inner
query to display the employee ID, last names, and a value of Canada or USA, depending on
whether the department ID of the record retrieved by the outer query is 20 or not.
The result of the first example on the slide follows:

…

Oracle Database 10g: SQL Fundamentals II 6-9

Scalar Subqueries: Examples (continued)
The second example on the slide demonstrates that scalar subqueries can be used in the ORDER
BY clause. The example orders the output based on the DEPARTMENT_NAME by matching the
DEPARTMENT_ID from the EMPLOYEES table with the DEPARTMENT_ID from the
DEPARTMENTS table. This comparison is done in a scalar subquery in the ORDER BY clause.
The result of the second example follows:

The second example uses a correlated subquery. In a correlated subquery, the subquery
references a column from a table referred to in the parent statement. Correlated subqueries are
explained later in this lesson.

…

Oracle Database 10g: SQL Fundamentals II 6-10

6-10 Copyright © 2004, Oracle. All rights reserved.

Correlated Subqueries

Correlated subqueries are used for row-by-row
processing. Each subquery is executed once for every
row of the outer query.

GET
candidate row from outer query

EXECUTE
inner query using candidate row value

USE
values from inner query to qualify or

disqualify candidate row

Correlated Subqueries
The Oracle server performs a correlated subquery when the subquery references a column from a
table referred to in the parent statement. A correlated subquery is evaluated once for each row
processed by the parent statement. The parent statement can be a SELECT, UPDATE, or
DELETE statement.
Nested Subqueries Versus Correlated Subqueries
With a normal nested subquery, the inner SELECT query runs first and executes once, returning
values to be used by the main query. A correlated subquery, however, executes once for each
candidate row considered by the outer query. In other words, the inner query is driven by the
outer query.
Nested Subquery Execution

• The inner query executes first and finds a value.
• The outer query executes once, using the value from the inner query.

Correlated Subquery Execution
• Get a candidate row (fetched by the outer query).
• Execute the inner query using the value of the candidate row.
• Use the values resulting from the inner query to qualify or disqualify the candidate.
• Repeat until no candidate row remains.

Oracle Database 10g: SQL Fundamentals II 6-11

6-11 Copyright © 2004, Oracle. All rights reserved.

Correlated Subqueries

The subquery references a column from a table in the
parent query.
SELECT column1, column2, ...
FROM table1
WHERE column1 operator

(SELECT column1, column2
FROM table2
WHERE expr1 =

.expr2);

outer

outer

Correlated Subqueries (continued)
A correlated subquery is one way of reading every row in a table and comparing values in each
row against related data. It is used whenever a subquery must return a different result or set of
results for each candidate row considered by the main query. In other words, you use a correlated
subquery to answer a multipart question whose answer depends on the value in each row
processed by the parent statement.
The Oracle server performs a correlated subquery when the subquery references a column from a
table in the parent query.
Note: You can use the ANY and ALL operators in a correlated subquery.

Oracle Database 10g: SQL Fundamentals II 6-12

6-12 Copyright © 2004, Oracle. All rights reserved.

SELECT last_name, salary, department_id
FROM employees outer
WHERE salary >

(SELECT AVG(salary)
FROM employees
WHERE department_id =
outer.department_id);

Using Correlated Subqueries

Find all employees who earn more than the average
salary in their department.

Each time a row from
the outer query
is processed, the
inner query is
evaluated.

Using Correlated Subqueries
The example on the slide determines which employees earn more than the average salary of their
department. In this case, the correlated subquery specifically computes the average salary for
each department.
Because both the outer query and inner query use the EMPLOYEES table in the FROM clause, an
alias is given to EMPLOYEES in the outer SELECT statement, for clarity. Not only does the alias
make the entire SELECT statement more readable, but without the alias the query would not
work properly, because the inner statement would not be able to distinguish the inner table
column from the outer table column.

Oracle Database 10g: SQL Fundamentals II 6-13

6-13 Copyright © 2004, Oracle. All rights reserved.

Using Correlated Subqueries

Display details of those employees who have changed
jobs at least twice.
SELECT e.employee_id, last_name,e.job_id
FROM employees e
WHERE 2 <= (SELECT COUNT(*)

FROM job_history
WHERE employee_id = e.employee_id);

Using Correlated Subqueries (continued)
The example on the slide displays the details of those employees who have changed jobs at least
twice. The Oracle server evaluates a correlated subquery as follows:

1. Select a row from the table specified in the outer query. This will be the current candidate
row.

2. Store the value of the column referenced in the subquery from this candidate row. (In the
example on the slide, the column referenced in the subquery is E.EMPLOYEE_ID.)

3. Perform the subquery with its condition referencing the value from the outer query’s
candidate row. (In the example on the slide, group function COUNT(*)is evaluated based
on the value of the E.EMPLOYEE_ID column obtained in step 2.)

4. Evaluate the WHERE clause of the outer query on the basis of results of the subquery
performed in step 3. This determines whether the candidate row is selected for output. (In
the example, the number of times an employee has changed jobs, evaluated by the
subquery, is compared with 2 in the WHERE clause of the outer query. If the condition is
satisfied, that employee record is displayed.)

5. Repeat the procedure for the next candidate row of the table, and so on until all the rows in
the table have been processed.

The correlation is established by using an element from the outer query in the subquery. In this
example you compare EMPLOYEE_ID from the table in the subquery with the EMPLOYEE_ID
from the table in the outer query.

Oracle Database 10g: SQL Fundamentals II 6-14

6-14 Copyright © 2004, Oracle. All rights reserved.

Using the EXISTS Operator

• The EXISTS operator tests for existence of rows in
the results set of the subquery.

• If a subquery row value is found:
– The search does not continue in the inner query
– The condition is flagged TRUE

• If a subquery row value is not found:
– The condition is flagged FALSE
– The search continues in the inner query

The EXISTS Operator
With nesting SELECT statements, all logical operators are valid. In addition, you can use the
EXISTS operator. This operator is frequently used with correlated subqueries to test whether a
value retrieved by the outer query exists in the results set of the values retrieved by the inner
query. If the subquery returns at least one row, the operator returns TRUE. If the value does not
exist, it returns FALSE. Accordingly, NOT EXISTS tests whether a value retrieved by the outer
query is not a part of the results set of the values retrieved by the inner query.

Oracle Database 10g: SQL Fundamentals II 6-15

6-15 Copyright © 2004, Oracle. All rights reserved.

SELECT employee_id, last_name, job_id, department_id
FROM employees outer
WHERE EXISTS (SELECT 'X'

FROM employees
WHERE manager_id =

outer.employee_id);

Find Employees Who Have at Least One
Person Reporting to Them

Using the EXISTS Operator
The EXISTS operator ensures that the search in the inner query does not continue when at least
one match is found for the manager and employee number by the condition:

WHERE manager_id = outer.employee_id.

Note that the inner SELECT query does not need to return a specific value, so a constant can be
selected.

Oracle Database 10g: SQL Fundamentals II 6-16

6-16 Copyright © 2004, Oracle. All rights reserved.

SELECT department_id, department_name
FROM departments d
WHERE NOT EXISTS (SELECT 'X'

FROM employees
WHERE department_id = d.department_id);

Find All Departments That Do Not Have
Any Employees

…

Using the NOT EXISTS Operator
Alternative Solution
A NOT IN construct can be used as an alternative for a NOT EXISTS operator, as shown in the
following example:

SELECT department_id, department_name
FROM departments
WHERE department_id NOT IN (SELECT department_id

FROM employees);
No rows selected.

However, NOT IN evaluates to FALSE if any member of the set is a NULL value. Therefore,
your query will not return any rows even if there are rows in the departments table that satisfy
the WHERE condition.

Oracle Database 10g: SQL Fundamentals II 6-17

6-17 Copyright © 2004, Oracle. All rights reserved.

Correlated UPDATE

Use a correlated subquery to update rows in one table
based on rows from another table.
UPDATE table1 alias1
SET column = (SELECT expression

FROM table2 alias2
WHERE alias1.column =

alias2.column);

Correlated UPDATE
In the case of the UPDATE statement, you can use a correlated subquery to update rows in one
table based on rows from another table.

Oracle Database 10g: SQL Fundamentals II 6-18

6-18 Copyright © 2004, Oracle. All rights reserved.

Using Correlated UPDATE

• Denormalize the EMPL6 table by adding a column
to store the department name.

• Populate the table by using a correlated update.
ALTER TABLE empl6
ADD(department_name VARCHAR2(25));

UPDATE empl6 e
SET department_name =

(SELECT department_name
FROM departments d
WHERE e.department_id = d.department_id);

Correlated UPDATE (continued)
The example on the slide denormalizes the EMPL6 table by adding a column to store the
department name and then populates the table by using a correlated update.
Following is another example for a correlated update.
Problem Statement
The REWARDS table has a list of employees who have exceeded expectations in their
performance. Use a correlated subquery to update rows in the EMPL6 table based on rows from
the REWARDS table:
UPDATE empl6
SET salary = (SELECT employees.salary + rewards.pay_raise

FROM rewards
WHERE employee_id =

employees.employee_id
AND payraise_date =

(SELECT MAX(payraise_date)
FROM rewards
WHERE employee_id = employees.employee_id))

WHERE employees.employee_id
IN (SELECT employee_id FROM rewards);

Oracle Database 10g: SQL Fundamentals II 6-19

Correlated UPDATE (continued)
This example uses the REWARDS table. The REWARDS table has the columns EMPLOYEE_ID,
PAY_RAISE, and PAYRAISE_DATE. Every time an employee gets a pay raise, a record with
the details of the employee ID, the amount of the pay raise, and the date of receipt of the pay
raise is inserted into the REWARDS table. The REWARDS table can contain more than one record
for an employee. The PAYRAISE _DATE column is used to identify the most recent pay raise
received by an employee.
In the example, the SALARY column in the EMPL6 table is updated to reflect the latest pay raise
received by the employee. This is done by adding the current salary of the employee with the
corresponding pay raise from the REWARDS table.

Oracle Database 10g: SQL Fundamentals II 6-20

6-20 Copyright © 2004, Oracle. All rights reserved.

DELETE FROM table1 alias1
WHERE column operator

(SELECT expression
FROM table2 alias2
WHERE alias1.column = alias2.column);

Correlated DELETE

Use a correlated subquery to delete rows in one table
based on rows from another table.

Correlated DELETE
In the case of a DELETE statement, you can use a correlated subquery to delete only those rows
that also exist in another table. If you decide that you will maintain only the last four job
history records in the JOB_HISTORY table, then when an employee transfers to a fifth
job, you delete the oldest JOB_HISTORY row by looking up the JOB_HISTORY table for
the MIN(START_DATE)for the employee. The following code illustrates how the
preceding operation can be performed using a correlated DELETE:

DELETE FROM emp_history JH
WHERE employee_id =

(SELECT employee_id
FROM employees E
WHERE JH.employee_id = E.employee_id
AND START_DATE =

(SELECT MIN(start_date)
FROM job_history JH
WHERE JH.employee_id = E.employee_id)
AND 5 > (SELECT COUNT(*)

FROM job_history JH
WHERE JH.employee_id = E.employee_id
GROUP BY EMPLOYEE_ID
HAVING COUNT(*) >= 4));

Oracle Database 10g: SQL Fundamentals II 6-21

6-21 Copyright © 2004, Oracle. All rights reserved.

DELETE FROM empl6 E
WHERE employee_id =

(SELECT employee_id
FROM emp_history
WHERE employee_id = E.employee_id);

Using Correlated DELETE

Use a correlated subquery to delete only those rows
from the EMPL6 table that also exist in the
EMP_HISTORY table.

Correlated DELETE (continued)
Example
Two tables are used in this example. They are:

• The EMPL6 table, which provides details of all the current employees
• The EMP_HISTORY table, which provides details of previous employees

EMP_HISTORY contains data regarding previous employees, so it would be erroneous if the
same employee’s record existed in both the EMPL6 and EMP_HISTORY tables. You can delete
such erroneous records by using the correlated subquery shown on the slide.

Oracle Database 10g: SQL Fundamentals II 6-22

6-22 Copyright © 2004, Oracle. All rights reserved.

The WITH Clause

• Using the WITH clause, you can use the same
query block in a SELECT statement when it occurs
more than once within a complex query.

• The WITH clause retrieves the results of a query
block and stores it in the user’s temporary
tablespace.

• The WITH clause improves performance.

The WITH Clause
Using the WITH clause, you can define a query block before using it in a query. The WITH
clause (formally known as subquery_factoring_clause) enables you to reuse the same
query block in a SELECT statement when it occurs more than once within a complex query. This
is particularly useful when a query has many references to the same query block and there are
joins and aggregations.
Using the WITH clause, you can reuse the same query when it is costly to evaluate the query
block and it occurs more than once within a complex query. Using the WITH clause, the Oracle
server retrieves the results of a query block and stores it in the user’s temporary tablespace. This
can improve performance.
WITH Clause Benefits

• Makes the query easy to read
• Evaluates a clause only once, even if it appears multiple times in the query
• In most cases may improve performance for large queries

Oracle Database 10g: SQL Fundamentals II 6-23

6-23 Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

Using the WITH clause, write a query to display the
department name and total salaries for those
departments whose total salary is greater than the
average salary across departments.

WITH Clause: Example
The problem on the slide would require the following intermediate calculations:

1. Calculate the total salary for every department, and store the result using a WITH clause.
2. Calculate the average salary across departments, and store the result using a WITH clause.
3. Compare the total salary calculated in the first step with the average salary calculated in the

second step. If the total salary for a particular department is greater than the average salary
across departments, then display the department name and the total salary for that
department.

The solution for this problem is provided on the next page.

Oracle Database 10g: SQL Fundamentals II 6-24

6-24 Copyright © 2004, Oracle. All rights reserved.

WITH Clause: Example

WITH
dept_costs AS (

SELECT d.department_name, SUM(e.salary) AS dept_total
FROM employees e JOIN departments d
ON e.department_id = d.department_id
GROUP BY d.department_name),

avg_cost AS (
SELECT SUM(dept_total)/COUNT(*) AS dept_avg
FROM dept_costs)

SELECT *
FROM dept_costs
WHERE dept_total >

(SELECT dept_avg
FROM avg_cost)

ORDER BY department_name;

WITH Clause: Example (continued)
The SQL code on the slide is an example of a situation in which you can improve performance
and write SQL more simply by using the WITH clause. The query creates the query names
DEPT_COSTS and AVG_COST and then uses them in the body of the main query. Internally, the
WITH clause is resolved either as an in-line view or a temporary table. The optimizer chooses the
appropriate resolution depending on the cost or benefit of temporarily storing the results of the
WITH clause.
The output generated by the SQL code on the slide is as follows:

The WITH Clause Usage Notes
• It is used only with SELECT statements.
• A query name is visible to all WITH element query blocks (including their subquery

blocks) defined after it and the main query block itself (including its subquery blocks).
• When the query name is the same as an existing table name, the parser searches from the

inside out, and the query block name takes precedence over the table name.
• The WITH clause can hold more than one query. Each query is then separated by a comma.

Oracle Database 10g: SQL Fundamentals II 6-25

6-25 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
• A multiple-column subquery returns more than

one column.
• Multiple-column comparisons can be pairwise or

nonpairwise.
• A multiple-column subquery can also be used in

the FROM clause of a SELECT statement.

Summary
You can use multiple-column subqueries to combine multiple WHERE conditions in a single
WHERE clause. Column comparisons in a multiple-column subquery can be pairwise
comparisons or nonpairwise comparisons.
You can use a subquery to define a table to be operated on by a containing query.
Scalar subqueries can be used in:

• Condition and expression part of DECODE and CASE
• All clauses of SELECT except GROUP BY
• A SET clause and WHERE clause of UPDATE statement

Oracle Database 10g: SQL Fundamentals II 6-26

6-26 Copyright © 2004, Oracle. All rights reserved.

Summary

• Correlated subqueries are useful whenever a
subquery must return a different result for each
candidate row.

• The EXISTS operator is a Boolean operator that
tests the presence of a value.

• Correlated subqueries can be used with SELECT,
UPDATE, and DELETE statements.

• You can use the WITH clause to use the same
query block in a SELECT statement when it occurs
more than once.

Summary (continued)
The Oracle server performs a correlated subquery when the subquery references a column from a
table referred to in the parent statement. A correlated subquery is evaluated once for each row
processed by the parent statement. The parent statement can be a SELECT, UPDATE, or
DELETE statement. Using the WITH clause, you can reuse the same query when it is costly to
reevaluate the query block and it occurs more than once within a complex query.

Oracle Database 10g: SQL Fundamentals II 6-27

6-27 Copyright © 2004, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
• Creating multiple-column subqueries
• Writing correlated subqueries
• Using the EXISTS operator
• Using scalar subqueries
• Using the WITH clause

Practice 6: Overview
In this practice, you write multiple-column subqueries, and correlated and scalar subqueries. You
also solve problems by writing the WITH clause.

Oracle Database 10g: SQL Fundamentals II 6-28

Practice 6
1. Write a query to display the last name, department number, and salary of any employee

whose department number and salary both match the department number and salary of any
employee who earns a commission.

2. Display the last name, department name, and salary of any employee whose salary and
commission match the salary and commission of any employee located in location ID
1700.

3. Create a query to display the last name, hire date, and salary for all employees who have
the same salary and commission as Kochhar.
Note: Do not display Kochhar in the result set.

4. Create a query to display the employees who earn a salary that is higher than the salary of
all of the sales managers (JOB_ID = 'SA_MAN'). Sort the results on salary from highest
to lowest.

…

…

Oracle Database 10g: SQL Fundamentals II 6-29

Practice 6 (continued)
5. Display the details of the employee ID, last name, and department ID of those employees

who live in cities whose name begins with T.

6. Write a query to find all employees who earn more than the average salary in their
departments.
Display last name, salary, department ID, and the average salary for the department. Sort
by average salary. Use aliases for the columns retrieved by the query as shown in the
sample output.

…

Oracle Database 10g: SQL Fundamentals II 6-30

Practice 6 (continued)
7. Find all employees who are not supervisors.

a. First do this using the NOT EXISTS operator.

b. Can this be done by using the NOT IN operator? How, or why not?

8. Write a query to display the last names of the employees who earn less than the average
salary in their departments.

…

…

Oracle Database 10g: SQL Fundamentals II 6-31

Practice 6 (continued)
9. Write a query to display the last names of the employees who have one or more coworkers

in their departments with later hire dates but higher salaries.

10. Write a query to display the employee ID, last names, and department names of all
employees.
Note: Use a scalar subquery to retrieve the department name in the SELECT statement.

…

…

Oracle Database 10g: SQL Fundamentals II 6-32

Practice 6 (continued)
11. Write a query to display the department names of those departments whose total salary cost

is above one-eighth (1/8) of the total salary cost of the whole company. Use the WITH
clause to write this query. Name the query SUMMARY.

Copyright © 2004, Oracle. All rights reserved.

Hierarchical Retrieval

Oracle Database 10g: SQL Fundamentals II 7-2

7-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:
• Interpret the concept of a hierarchical query
• Create a tree-structured report
• Format hierarchical data
• Exclude branches from the tree structure

Objectives
In this lesson, you learn how to use hierarchical queries to create tree-structured reports.

Oracle Database 10g: SQL Fundamentals II 7-3

7-3 Copyright © 2004, Oracle. All rights reserved.

Sample Data from the EMPLOYEES Table

…

Sample Data from the EMPLOYEES Table
Using hierarchical queries, you can retrieve data based on a natural hierarchical relationship
between rows in a table. A relational database does not store records in a hierarchical way.
However, where a hierarchical relationship exists between the rows of a single table, a process
called tree walking enables the hierarchy to be constructed. A hierarchical query is a method of
reporting, the branches of a tree in a specific order.
Imagine a family tree with the eldest members of the family found close to the base or trunk of
the tree and the youngest members representing branches of the tree. Branches can have their
own branches, and so on.
A hierarchical query is possible when a relationship exists between rows in a table. For example,
on the slide, you see that employees with the job IDs of AD_VP, ST_MAN, SA_MAN, and
MK_MAN report directly to the president of the company. We know this because the
MANAGER_ID column of these records contains the employee ID 100, which belongs to the
president (AD_PRES).
Note: Hierarchical trees are used in various fields such as human genealogy (family trees),
livestock (breeding purposes), corporate management (management hierarchies), manufacturing
(product assembly), evolutionary research (species development), and scientific research.

Oracle Database 10g: SQL Fundamentals II 7-4

7-4 Copyright © 2004, Oracle. All rights reserved.

Natural Tree Structure

De Haan

King

Hunold

EMPLOYEE_ID = 100 (Parent)

MANAGER_ID = 100 (Child)

Whalen

Kochhar

Higgins

Mourgos Zlotkey

Rajs Davies Matos

Gietz Ernst Lorentz

Hartstein

Fay

Abel Taylor Grant

Vargas

Natural Tree Structure
The EMPLOYEES table has a tree structure representing the management reporting line. The
hierarchy can be created by looking at the relationship between equivalent values in the
EMPLOYEE_ID and MANAGER_ID columns. This relationship can be exploited by joining the
table to itself. The MANAGER_ID column contains the employee number of the employee’s
manager.
The parent-child relationship of a tree structure enables you to control:

• The direction in which the hierarchy is walked
• The starting point inside the hierarchy

Note: The slide displays an inverted tree structure of the management hierarchy of the
employees in the EMPLOYEES table.

Oracle Database 10g: SQL Fundamentals II 7-5

7-5 Copyright © 2004, Oracle. All rights reserved.

Hierarchical Queries

WHERE condition:
expr comparison_operator expr

SELECT [LEVEL], column, expr...
FROM table
[WHERE condition(s)]
[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)] ;

Keywords and Clauses
Hierarchical queries can be identified by the presence of the CONNECT BY and START WITH
clauses.
In the syntax:
SELECT Is the standard SELECT clause
LEVEL For each row returned by a hierarchical query, the LEVEL

pseudocolumn returns 1 for a root row, 2 for a child of a root, and so on.
FROM table Specifies the table, view, or snapshot containing the columns. You can

select from only one table.
WHERE Restricts the rows returned by the query without affecting other rows of

the hierarchy
condition Is a comparison with expressions
START WITH Specifies the root rows of the hierarchy (where to start). This clause is

required for a true hierarchical query.
CONNECT BY Specifies the columns in which the relationship between parent and

child PRIOR rows exist. This clause is required for a hierarchical query.
The SELECT statement cannot contain a join or query from a view that contains a join.

Oracle Database 10g: SQL Fundamentals II 7-6

7-6 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree

• Specifies the condition that must be met
• Accepts any valid condition

Using the EMPLOYEES table, start with the employee
whose last name is Kochhar.

Starting Point

...START WITH last_name = 'Kochhar'

START WITH column1 = value

Walking the Tree
The row or rows to be used as the root of the tree are determined by the START WITH clause.
The START WITH clause can be used in conjunction with any valid condition.
Examples
Using the EMPLOYEES table, start with King, the president of the company.

... START WITH manager_id IS NULL

Using the EMPLOYEES table, start with employee Kochhar. A START WITH condition can
contain a subquery.

... START WITH employee_id = (SELECT employee_id
FROM employees
WHERE last_name = 'Kochhar')

If the START WITH clause is omitted, the tree walk is started with all of the rows in the table as
root rows. If a WHERE clause is used, the walk is started with all the rows that satisfy the WHERE
condition. This no longer reflects a true hierarchy.
Note: The clauses CONNECT BY PRIOR and START WITH are not ANSI SQL standard.

Oracle Database 10g: SQL Fundamentals II 7-7

7-7 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree

Walk from the top down, using the EMPLOYEES table.

Direction

Top down Column1 = Parent Key
Column2 = Child Key

Bottom up Column1 = Child Key
Column2 = Parent Key

CONNECT BY PRIOR column1 = column2

... CONNECT BY PRIOR employee_id = manager_id

Walking the Tree (continued)
The direction of the query, whether it is from parent to child or from child to parent, is
determined by the CONNECT BY PRIOR column placement. The PRIOR operator refers to the
parent row. To find the child rows of a parent row, the Oracle server evaluates the PRIOR
expression for the parent row and the other expressions for each row in the table. Rows for which
the condition is true are the child rows of the parent. The Oracle server always selects child rows
by evaluating the CONNECT BY condition with respect to a current parent row.
Examples
Walk from the top down using the EMPLOYEES table. Define a hierarchical relationship in
which the EMPLOYEE_ID value of the parent row is equal to the MANAGER_ID value of the
child row.

... CONNECT BY PRIOR employee_id = manager_id
Walk from the bottom up using the EMPLOYEES table.

... CONNECT BY PRIOR manager_id = employee_id
The PRIOR operator does not necessarily need to be coded immediately following the
CONNECT BY. Thus, the following CONNECT BY PRIOR clause gives the same result as the
one in the preceding example.

... CONNECT BY employee_id = PRIOR manager_id
Note: The CONNECT BY clause cannot contain a subquery.

Oracle Database 10g: SQL Fundamentals II 7-8

7-8 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree: From the Bottom Up

SELECT employee_id, last_name, job_id, manager_id
FROM employees
START WITH employee_id = 101
CONNECT BY PRIOR manager_id = employee_id ;

Walking the Tree: From the Bottom Up
The example on the slide displays a list of managers starting with the employee whose employee
ID is 101.
Example
In the following example, EMPLOYEE_ID values are evaluated for the parent row and
MANAGER_ID, and SALARY values are evaluated for the child rows. The PRIOR operator
applies only to the EMPLOYEE_ID value.

... CONNECT BY PRIOR employee_id = manager_id
AND salary > 15000;

To qualify as a child row, a row must have a MANAGER_ID value equal to the EMPLOYEE_ID
value of the parent row and must have a SALARY value greater than $15,000.

Oracle Database 10g: SQL Fundamentals II 7-9

7-9 Copyright © 2004, Oracle. All rights reserved.

Walking the Tree: From the Top Down

SELECT last_name||' reports to '||
PRIOR last_name "Walk Top Down"
FROM employees
START WITH last_name = 'King'
CONNECT BY PRIOR employee_id = manager_id ;

…

Walking the Tree: From the Top Down
Walking from the top down, display the names of the employees and their manager. Use
employee King as the starting point. Print only one column.

Oracle Database 10g: SQL Fundamentals II 7-10

7-10 Copyright © 2004, Oracle. All rights reserved.

Ranking Rows with the LEVEL
Pseudocolumn

Level 1
root/parent

Level 3
parent/child /leaf

Level 4
leaf

De Haan

King

HunoldWhalen

Kochhar

Higgins

Mourgos Zlotkey

Rajs Davies Matos

Gietz Ernst Lorentz

Hartstein

Fay

Abel Taylor Grant

Vargas

Ranking Rows with the LEVEL Pseudocolumn
You can explicitly show the rank or level of a row in the hierarchy by using the LEVEL
pseudocolumn. This will make your report more readable. The forks where one or more branches
split away from a larger branch are called nodes, and the very end of a branch is called a leaf, or
leaf node. The diagram on the slide shows the nodes of the inverted tree with their LEVEL
values. For example, employee Higgens is a parent and a child, whereas employee Davies is a
child and a leaf.
The LEVEL Pseudocolumn

On the slide, King is the root or parent (LEVEL = 1). Kochhar, De Haan, Mourgos, Zlotkey,
Hartstein, Higgens, and Hunold are children and also parents (LEVEL = 2). Whalen, Rajs,
Davies, Matos, Vargas, Gietz, Ernst, Lorentz, Abel, Taylor, Grant, and Fay are children and
leaves. (LEVEL = 3 and LEVEL = 4)
Note: A root node is the highest node within an inverted tree. A child node is any nonroot node.
A parent node is any node that has children. A leaf node is any node without children. The
number of levels returned by a hierarchical query may be limited by available user memory.

Value Level
1 A root node
2 A child of a root node
3 A child of a child, and so on

Oracle Database 10g: SQL Fundamentals II 7-11

7-11 Copyright © 2004, Oracle. All rights reserved.

Formatting Hierarchical Reports Using
LEVEL and LPAD

Create a report displaying company management
levels, beginning with the highest level and indenting
each of the following levels.

COLUMN org_chart FORMAT A12
SELECT LPAD(last_name, LENGTH(last_name)+(LEVEL*2)-2,'_')

AS org_chart
FROM employees
START WITH last_name='King'
CONNECT BY PRIOR employee_id=manager_id

Formatting Hierarchical Reports Using LEVEL
The nodes in a tree are assigned level numbers from the root. Use the LPAD function in
conjunction with the pseudocolumn LEVEL to display a hierarchical report as an indented tree.
In the example on the slide:
• LPAD(char1,n [,char2]) returns char1, left-padded to length n with the sequence

of characters in char2. The argument n is the total length of the return value as it is
displayed on your terminal screen.

• LPAD(last_name, LENGTH(last_name)+(LEVEL*2)-2,'_')defines the
display format.

• char1 is the LAST_NAME , n the total length of the return value, is length of the
LAST_NAME +(LEVEL*2)-2 ,and char2 is '_'.

In other words, this tells SQL to take the LAST_NAME and left-pad it with the '_' character
until the length of the resultant string is equal to the value determined by
LENGTH(last_name)+(LEVEL*2)-2.
For King, LEVEL = 1. Therefore, (2 * 1) – 2 = 2 – 2 = 0. So King does not get padded with
any '_' character and is displayed in column 1.
For Kochhar, LEVEL = 2. Therefore, (2 * 2) – 2 = 4 – 2 = 2 . So Kochhar gets padded with 2
'_' characters and is displayed indented.
The rest of the records in the EMPLOYEES table are displayed similarly.

Oracle Database 10g: SQL Fundamentals II 7-12

Formatting Hierarchical Reports Using LEVEL (continued)

…

Oracle Database 10g: SQL Fundamentals II 7-13

7-13 Copyright © 2004, Oracle. All rights reserved.

Pruning Branches

Use the WHERE clause
to eliminate a node.

Use the CONNECT BY clause
to eliminate a branch.

WHERE last_name != 'Higgins'CONNECT BY PRIOR
employee_id = manager_id
AND last_name != 'Higgins'

Kochhar

Higgins

Gietz

Whalen

Kochhar

HigginsWhalen

Gietz

Pruning Branches
You can use the WHERE and CONNECT BY clauses to prune the tree; that is, to control which
nodes or rows are displayed. The predicate you use acts as a Boolean condition.
Examples
Starting at the root, walk from the top down, and eliminate employee Higgins in the result, but
process the child rows.

SELECT department_id, employee_id,last_name, job_id, salary
FROM employees
WHERE last_name != 'Higgins'
START WITH manager_id IS NULL
CONNECT BY PRIOR employee_id = manager_id;

Starting at the root, walk from the top down, and eliminate employee Higgins and all child rows.
SELECT department_id, employee_id,last_name, job_id, salary
FROM employees
START WITH manager_id IS NULL
CONNECT BY PRIOR employee_id = manager_id
AND last_name != 'Higgins';

Oracle Database 10g: SQL Fundamentals II 7-14

7-14 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
• You can use hierarchical queries to view a

hierarchical relationship between rows in a table.
• You specify the direction and starting point of the

query.
• You can eliminate nodes or branches by pruning.

Summary
You can use hierarchical queries to retrieve data based on a natural hierarchical relationship
between rows in a table. The LEVEL pseudocolumn counts how far down a hierarchical tree you
have traveled. You can specify the direction of the query using the CONNECT BY PRIOR
clause. You can specify the starting point using the START WITH clause. You can use the
WHERE and CONNECT BY clauses to prune the tree branches.

Oracle Database 10g: SQL Fundamentals II 7-15

7-15 Copyright © 2004, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:
• Distinguishing hierarchical queries from

nonhierarchical queries
• Walking through a tree
• Producing an indented report by using the LEVEL

pseudocolumn
• Pruning the tree structure
• Sorting the output

Practice 7: Overview
In this practice, you gain practical experience in producing hierarchical reports.
Note: Question 1 is a paper-based question.

Oracle Database 10g: SQL Fundamentals II 7-16

Practice 7
1. Look at the following output examples. Are they the result of a hierarchical query? Explain

why or why not.
Exhibit 1:

Exhibit 2:

…

Oracle Database 10g: SQL Fundamentals II 7-17

Practice 7 (continued)
Exhibit 3:

2. Produce a report showing an organization chart for Mourgos’s department. Print last
names, salaries, and department IDs.

3. Create a report that shows the hierarchy of the managers for the employee Lorentz. Display
his immediate manager first.

Oracle Database 10g: SQL Fundamentals II 7-18

Practice 7 (continued)
4. Create an indented report showing the management hierarchy starting from the employee

whose LAST_NAME is Kochhar. Print the employee’s last name, manager ID, and
department ID. Give alias names to the columns as shown in the sample output.

If you have time, complete the following exercise:
5. Produce a company organization chart that shows the management hierarchy. Start with the

person at the top level, exclude all people with a job ID of IT_PROG, and exclude De
Haan and those employees who report to De Haan.

…

Copyright © 2004, Oracle. All rights reserved.

Regular Expression Support

Oracle Database 10g: SQL Fundamentals II 8-2

Copyright © 2004, Oracle. All rights reserved.8-2

Objectives

After completing this lesson, you should be able to
use regular expression support in SQL to search,
match, and replace strings all in terms of regular
expressions.

Objectives
In this lesson you learn to use the regular expression support feature that has been introduced in
Oracle Database 10g.

Oracle Database 10g: SQL Fundamentals II 8-3

Copyright © 2004, Oracle. All rights reserved.8-3

Regular Expression Overview

ABC

A method of
describing both

simple and complex
patterns for

searching and
manipulating

Several new
functions to

support regular
expressions

A multilingual
regular expression

support for SQL
and PLSQL string

types

Regular Expression Overview
Oracle Database 10g introduces support for Regular Expressions. The implementation complies
with the Portable Operating System for UNIX (POSIX) standard, controlled by the Institute of
Electrical and Electronics Engineers (IEEE), for ASCII data matching semantics and syntax.
Oracle’s multilingual capabilities extend the matching capabilities of the operators beyond the
POSIX standard. Regular expressions are a method of describing both simple and complex
patterns for searching and manipulating.
String manipulation and searching contribute to a large percentage of the logic within a Web-
based application. Usage ranges from the simple: find the word “San Francisco” in a specified
text; to the complex extract of all URLs from the text; to the more complex: find all words
whose every second character is a vowel.
When coupled with native SQL, the use of regular expressions allows for very powerful search
and manipulation operations on any data stored in an Oracle database. You can use this feature to
easily solve problems that would otherwise be very complex to program.

Oracle Database 10g: SQL Fundamentals II 8-4

Copyright © 2004, Oracle. All rights reserved.8-4

Meta Characters

Specifies equivalence classes[==]

Matches one or more occurrence+
Matches zero or one occurrence?
Matches any character in the supported character set, except NULL.
Grouping expression, treated as a single subexpression()

Back-reference expression\n

Specifies a character class and matches any character in that class[: :]
Can have 4 different meanings: 1. Stand for itself. 2. Quote the next
character. 3. Introduce an operator. 4. Do nothing.

\

DescriptionSymbol

Specifies one collation element, such as a multicharacter element

Matches at least m times but no more than n times
Matches exactly m times

Bracket expression for a matching list matching any one of the
expressions represented in the list

Matches the start-of-line/end-of-line
Alteration operator for specifying alternative matches
Matches zero or more occurrences

[..]

{m,n}
{m}

[]
^/$
|
*

Meta Characters
Meta characters are special characters that have a special meaning, such as a wildcard character,
a repeating character, a nonmatching character, or a range of characters. You can use several
predefined meta character symbols in the pattern matching.

Oracle Database 10g: SQL Fundamentals II 8-5

Copyright © 2004, Oracle. All rights reserved.8-5

Using Meta Characters
Problem: Find 'abc' within a string:
Solution: 'abc'
Matches: abc
Does not match: 'def'

Problem: To find 'a' followed by any character, followed
by 'c'

Meta Character: any character is defined by '.'
Solution: 'a.c'
Matches: abc
Matches: adc
Matches: alc
Matches: a&c
Does not match: abb

Problem: To find one or more occurrences of 'a'
Meta Character: Use'+' sign to match one or more of the
previous characters
Solution: 'a+'
Matches: a
Matches: aa
Does not match: bbb

1

2

3

Using Meta Characters
1. In the first example, a simple match is performed.
2. In the second example, the any character is defined as a '.'. This example searches for the

character “a” followed by any character, followed by the character “c”.
3. The third example searches for one or more occurrences of the letter “a.” The “+” character

is used here to indicate a match of one or more of the previous characters.
You can search for nonmatching character lists too. A nonmatching character list allows you to
define a set of characters for which a match is invalid. For example, to find anything but the
characters “a,” “b,” or “c,” you can define the “^” to indicate a nonmatch.
Expression: [^abc]

Matches: abcdef
Matches: ghi
Does not match: abc

To match any letter not between “a” and “i,” you can use:
Expression: [^a-i]

Matches: hijk
Matches: lmn
Does not match: abcdefghi

Oracle Database 10g: SQL Fundamentals II 8-6

Using Meta Characters (continued)

Match any character in list ...Matching Character List[…]

Match any character not in list ...Non-Matching Character List[^…]

'a|b' matches character 'a' or 'b'.Or|

Treat expression ... as a unit. Subexpression or Grouping(…)

Match the nth preceding subexpression,
where n is an integer from 1 to 9

Back reference\n

Treat the subsequent meta character in
the expression as a literal.

Escape Character\

Match the subsequent expression when it
occurs at the beginning of a line.

Beginning of Line Anchor^

Match the preceding expression only
when it occurs at the end of a line.

End of Line Anchor$

Match any character belonging to the
specified character class.

POSIX Character Class[:class:]

Match zero or one occurrence of the
preceding subexpression

Zero or One – Question Mark
Quantifier

?

Match any characterAny Character – Dot.

DescriptionOperator NameMeta Character
Syntax

Match
• exactly m occurrences
• at least m occurrences
• at least m, but not more than n

occurrences of the preceding
subexpression

Interval – Exact Count{m}
{m,}
{m,n}

Match zero or more occurrences of the
preceding subexpression

Zero or More – Star
Quantifier

*

Match one or more occurrences of the
preceding subexpression

One or More – Plus
Quantifier

+

Oracle Database 10g: SQL Fundamentals II 8-7

Copyright © 2004, Oracle. All rights reserved.8-7

Regular Expression Functions

Searches for a given string for a regular
expression pattern and returns the
position where the match is found

REGEXP_INSTR

Searches for a regular expression pattern
within a given string and returns the
matched substring

REGEXP_SUBSTR

Searches for a regular expression pattern
and replaces it with a replacement string

REGEXP_REPLACE

Similar to the LIKE operator, but performs
regular expression matching instead of
simple pattern matching

REGEXP_LIKE
DescriptionFunction Name

Regular Expression Functions
The Oracle Database 10g provides a set of SQL functions that you can use to search and
manipulate strings using regular expressions. You can use these functions on any data type that
holds character data such as CHAR, NCHAR, CLOB, NCLOB, NVARCHAR2, and VARCHAR2. A
regular expression must be enclosed or wrapped between single quotation marks. Doing so
ensures that the entire expression is interpreted by the SQL function and can improve the
readability of your code.
REGEXP_LIKE: This function searches a character column for a pattern. Use this function in
the WHERE clause of a query to return rows matching the regular expression you specify.
REGEXP_REPLACE: This function searches for a pattern in a character column and replaces
each occurrence of that pattern with the pattern you specify.
REGEXP_INSTR: This function searches a string for a given occurrence of a regular expression
pattern. You specify which occurrence you want to find and the start position to search from.
This function returns an integer indicating the position in the string where the match is found.
REGEXP_SUBSTR: This function returns the actual substring matching the regular expression
pattern you specify.

Oracle Database 10g: SQL Fundamentals II 8-8

Copyright © 2004, Oracle. All rights reserved.8-8

The REGEXP Function Syntax

REGEXP_LIKE (srcstr, pattern [,match_option])

REGEXP_INSTR (srcstr, pattern [, position [, occurrence
[, return_option [, match_option]]]])

REGEXP_SUBSTR (srcstr, pattern [, position
[, occurrence [, match_option]]])

REGEXP_REPLACE(srcstr, pattern [,replacestr [, position
[, occurrence [, match_option]]]])

The REGEXP Function Syntax
The following table contains descriptions of the terms shown in the syntax on the slide.

Occurrence to search foroccurrence

Option to change default matching; it can include one or
more of the following values:
“c” —uses case-sensitive matching (default)
“I” —uses case-insensitive matching
“n” —allows match-any-character operator
“m” —treats source string as multiple line

Character string replacing pattern

Start or end position of occurrence

Search starting position

Regular expression

Search value

match_option

replacestr

return_option

position

pattern

srcstr

Oracle Database 10g: SQL Fundamentals II 8-9

Copyright © 2004, Oracle. All rights reserved.8-9

SELECT first_name, last_name

FROM employees

WHERE REGEXP_LIKE (first_name, '^Ste(v|ph)en$');

Performing Basic Searches

Example of REGEXP_LIKE
In this query, against the EMPLOYEES table, all employees with first names containing either
Steven or Stephen are displayed. In the expression used,
'^Ste(v|ph)en$' :

• ^ indicates the beginning of the sentence
• $ indicates the end of the sentence
• | indicates either/or

Oracle Database 10g: SQL Fundamentals II 8-10

Copyright © 2004, Oracle. All rights reserved.8-10

SELECT street_address,
REGEXP_INSTR(street_address,'[^[:alpha:]]')

FROM locations
WHERE

REGEXP_INSTR(street_address,'[^[:alpha:]]')> 1;

Checking the Presence of a Pattern

Checking the Presence of a Pattern
In this example, the REGEXP_INSTR function is used to search the street address to find the
location of the first nonalphabetic character, regardless of whether it is in upper or lower case. The
search is performed only on those addresses that do not start with a number. Note that
[:<class>:] implies a character class and matches any character from within that class;
[:alpha:] matches with any alphabetic character. The results are displayed.
In the expression used in the query '[^[:alpha:]]':

• [starts the expression
• ^ indicates NOT
• [:alpha:] indicates alpha character class
•] ends the expression

Note: The POSIX character class operator enables you to search for an expression within a
character list that is a member of a specific POSIX character class. You can use this operator to
search for specific formatting, such as uppercase characters, or you can search for special
characters such as digits or punctuation characters. The full set of POSIX character classes is
supported. Use the syntax [:class:] where class is the name of the POSIX character class to search
for. The following regular expression searches for one or more consecutive uppercase characters :
[[:upper:]]+ .

Oracle Database 10g: SQL Fundamentals II 8-11

Copyright © 2004, Oracle. All rights reserved.8-11

SELECT REGEXP_SUBSTR(street_address , ' [^]+ ')
"Road" FROM locations;

Example of Extracting Substrings

…

Example of Extracting a Substring
In this example, the road names are extracted from the LOCATIONS table. To do this, the
contents in the STREET_ADDRESS column that are before the first space are returned using the
REGEXP_SUBSTR function. In the expression used in the query '[^]+ ':

• [starts the expression
• ^ indicates NOT
• indicates space
•] ends the expression
• + indicates 1 or more
• indicates space

Oracle Database 10g: SQL Fundamentals II 8-12

Copyright © 2004, Oracle. All rights reserved.8-12

SELECT REGEXP_REPLACE(country_name, '(.)',
'\1 ') "REGEXP_REPLACE"

FROM countries;

Replacing Patterns

…

Replacing Patterns
This example examines examines COUNTRY_NAME. The Oracle database reformats this pattern
with a space after each non-null character in the string. The results are shown.

Oracle Database 10g: SQL Fundamentals II 8-13

Copyright © 2004, Oracle. All rights reserved.8-13

Regular Expressions and
Check Constraints

ALTER TABLE emp8
ADD CONSTRAINT email_addr
CHECK(REGEXP_LIKE(email,'@'))NOVALIDATE ;

INSERT INTO emp8 VALUES
(500,'Christian','Patel',
'ChrisP2creme.com', 1234567890,
'12-Jan-2004', 'HR_REP', 2000, null, 102, 40) ;

1

2

Regular Expressions and Check Constraints
Regular expressions can also be used in check constraints. In this example, a check constraint is
added on the EMAIL column of the EMPLOYEES table. This will ensure that only strings
containing an “@” symbol are accepted. The constraint is tested. The check constraint is violated
because the e-mail address does not contain the required symbol. The NOVALIDATE clause
ensures that existing data is not checked.

Oracle Database 10g: SQL Fundamentals II 8-14

Copyright © 2004, Oracle. All rights reserved.8-14

Summary

In this lesson, you should have learned how to use
regular expression support in SQL and PL/SQL to
search, match, and replace strings all in terms of
regular expressions.

Summary
In this lesson you have learned to use the regular expression support features that have been
introduced in Oracle Database 10g.

Oracle Database 10g: SQL Fundamentals II 8-15

Copyright © 2004, Oracle. All rights reserved.8-15

Practice 8: Overview

This practice covers using regular expressions.

Practice 8: Overview
This practices covers searching and replacing data using regular expressions.

Oracle Database 10g: SQL Fundamentals II 8-16

Practice 8
1. Write a query to search the EMPLOYEES table for all employees whose first names start

with “Ne” or “Na.”

2. Create a query that removes the spaces in the STREET_ADDRESS column of
LOCATIONS table in the display.

Oracle Database 10g: SQL Fundamentals II 8-17

Practice 8 (continued)
3. Create a query that displays “St” replaced by “Street” in the STREET_ADDRESS column

of LOCATIONS table. Be careful that you do not affect any rows that already have “Street”
in them. Display only those rows which are affected.

Appendix B
Table Descriptions

and Data

Oracle Database 10g: SQL Fundamentals II B-2

ENTITY RELATIONSHIP DIAGRAM

Oracle Database 10g: SQL Fundamentals II B-3

Tables in the Schema
SELECT * FROM tab;

Oracle Database 10g: SQL Fundamentals II B-4

REGIONS Table
DESCRIBE regions

SELECT * FROM regions;

Oracle Database 10g: SQL Fundamentals II B-5

COUNTRIES Table
DESCRIBE countries

SELECT * FROM countries;

Oracle Database 10g: SQL Fundamentals II B-6

LOCATIONS Table
DESCRIBE locations;

SELECT * FROM locations;

Oracle Database 10g: SQL Fundamentals II B-7

DEPARTMENTS Table
DESCRIBE departments

SELECT * FROM departments;

Oracle Database 10g: SQL Fundamentals II B-8

JOBS Table
DESCRIBE jobs

SELECT * FROM jobs;

Oracle Database 10g: SQL Fundamentals II B-9

EMPLOYEES Table
DESCRIBE employees

Oracle Database 10g: SQL Fundamentals II B-10

EMPLOYEES Table
The headings for columns COMMISSION_PCT, MANAGER_ID, and DEPARTMENT_ID are set
to COMM, MGRID, and DEPTID in the following screenshot, to fit the table values across the
page.
SELECT * FROM employees;

Oracle Database 10g: SQL Fundamentals II B-11

EMPLOYEES Table (continued)

Oracle Database 10g: SQL Fundamentals II B-12

EMPLOYEES Table (continued)

Oracle Database 10g: SQL Fundamentals II B-13

JOB_HISTORY Table
DESCRIBE job_history

SELECT * FROM job_history;

Copyright © 2004, Oracle. All rights reserved.

Writing Advanced Scripts

Oracle Database 10g: SQL Fundamentals II C-2

Copyright © 2004, Oracle. All rights reserved.C-2

Objectives

After completing this appendix, you should be able to
do the following:
• Describe the type of problems that are solved by

using SQL to generate SQL
• Write a script that generates a script of DROP

TABLE statements
• Write a script that generates a script of INSERT

INTO statements

Objectives
In this appendix, you learn how to write a SQL script to generates a SQL script.

Oracle Database 10g: SQL Fundamentals II C-3

Copyright © 2004, Oracle. All rights reserved.C-3

Using SQL to Generate SQL

• SQL can be used to generate scripts in SQL
• The data dictionary:

– Is a collection of tables and views that contain
database information

– Is created and maintained by the Oracle server

SQL script

SQL Data dictionary

Using SQL to Generate SQL
SQL can be a powerful tool to generate other SQL statements. In most cases this involves
writing a script file. You can use SQL from SQL to:

• Avoid repetitive coding
• Access information from the data dictionary
• Drop or re-create database objects
• Generate dynamic predicates that contain run-time parameters

The examples used in this lesson involve selecting information from the data dictionary. The
data dictionary is a collection of tables and views that contain information about the database.
This collection is created and maintained by the Oracle server. All data dictionary tables are
owned by the SYS user. Information stored in the data dictionary includes names of Oracle
server users, privileges granted to users, database object names, table constraints, and audit
information. There are four categories of data dictionary views. Each category has a distinct
prefix that reflects its intended use.

Prefix Description
USER_ Contains details of objects owned by the user
ALL_ Contains details of objects to which the user has been granted access rights, in addition to

objects owned by the user
DBA_ Contains details of users with DBA privileges to access any object in the database
V$_ Stored information about database server performance and locking; available only to the DBA

Oracle Database 10g: SQL Fundamentals II C-4

Copyright © 2004, Oracle. All rights reserved.C-4

Creating a Basic Script

SELECT 'CREATE TABLE ' || table_name ||
'_test ' || 'AS SELECT * FROM '
|| table_name ||' WHERE 1=2;'
AS "Create Table Script"

FROM user_tables;

A Basic Script
The example on the slide produces a report with CREATE TABLE statements from every table
you own. Each CREATE TABLE statement produced in the report includes the syntax to create a
table using the table name with a suffix of _test and having only the structure of the
corresponding existing table. The old table name is obtained from the TABLE_NAME column of
the data dictionary view USER_TABLES.
The next step is to enhance the report to automate the process.
Note: You can query the data dictionary tables to view various database objects that you own.
The data dictionary views frequently used include:
• USER_TABLES: Displays description of the user’s own tables
• USER_OBJECTS: Displays all the objects owned by the user
• USER_TAB_PRIVS_MADE: Displays all grants on objects owned by the user
• USER_COL_PRIVS_MADE: Displays all grants on columns of objects owned by the user

Oracle Database 10g: SQL Fundamentals II C-5

Copyright © 2004, Oracle. All rights reserved.C-5

SPOOL dropem.sql

SPOOL OFF

Controlling the Environment

Set system variables
to appropriate values.

Set system variables
back to the default
value.

SQL STATEMENT

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE 0

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

Controlling the Environment
In order to execute the SQL statements that are generated, you must capture them in a spool file
that can then be run. You must also plan to clean up the output that is generated and make sure
that you suppress elements such as headings, feedback messages, top titles, and so on. You can
accomplish all of this by using iSQL*Plus commands.

Oracle Database 10g: SQL Fundamentals II C-6

Copyright © 2004, Oracle. All rights reserved.C-6

The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE 0

SELECT 'DROP TABLE ' || object_name || ';'
FROM user_objects
WHERE object_type = 'TABLE'
/

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

The Complete Picture
The output of the command on the slide is saved into a file called dropem.sql using the File
Output option in iSQL*Plus. This file contains the following data. This file can now be started
from iSQL*Plus by locating the script file, loading it, and executing it.

Note: By default, files are spooled into the ORACLE_HOME\ORANT\BIN folder in Windows
NT.

Oracle Database 10g: SQL Fundamentals II C-7

Copyright © 2004, Oracle. All rights reserved.C-7

Dumping the Contents of a Table to a File

SET HEADING OFF ECHO OFF FEEDBACK OFF
SET PAGESIZE 0

SELECT
'INSERT INTO departments_test VALUES
(' || department_id || ', ''' || department_name ||
''', ''' || location_id || ''');'
AS "Insert Statements Script"

FROM departments
/

SET PAGESIZE 24
SET HEADING ON ECHO ON FEEDBACK ON

Dumping Table Contents to a File
Sometimes it is useful to have the values for the rows of a table in a text file in the format of an
INSERT INTO VALUES statement. This script can be run to populate the table in case the
table has been dropped accidentally.
The example on the slide produces INSERT statements for the DEPARTMENTS_TEST table,
captured in the data.sql file using the File Output option in iSQL*Plus.
The contents of the data.sql script file are as follows:

INSERT INTO departments_test VALUES
(10, 'Administration', 1700);

INSERT INTO departments_test VALUES
(20, 'Marketing', 1800);

INSERT INTO departments_test VALUES
(50, 'Shipping', 1500);

INSERT INTO departments_test VALUES
(60, 'IT', 1400);

...

Oracle Database 10g: SQL Fundamentals II C-8

Copyright © 2004, Oracle. All rights reserved.C-8

Dumping the Contents of a Table to a File

Source

'''X'''

''''

''''||department_name||''''

''', '''

''');'

Result

'X'

'

'Administration'

','

');

Dumping Table Contents to a File (continued)
You may have noticed the large number of single quotation marks on the slide on the previous
page. A set of four single quotation marks produces one single quotation mark in the final
statement. Also remember that character and date values must be surrounded by quotation marks.
Within a string, to display one single quotation mark, you need to prefix it with another single
quotation mark. For example, in the fifth example on the slide, the surrounding quotation marks
are for the entire string. The second quotation mark acts as a prefix to display the third quotation
mark. Thus the result is one single quotation mark followed by the parenthesis, followed by the
semicolon.

Oracle Database 10g: SQL Fundamentals II C-9

Copyright © 2004, Oracle. All rights reserved.C-9

Generating a Dynamic Predicate

COLUMN my_col NEW_VALUE dyn_where_clause

SELECT DECODE('&&deptno', null,
DECODE ('&&hiredate', null, ' ',
'WHERE hire_date=TO_DATE('''||'&&hiredate'',''DD-MON-YYYY'')'),
DECODE ('&&hiredate', null,
'WHERE department_id = ' || '&&deptno',
'WHERE department_id = ' || '&&deptno' ||
' AND hire_date = TO_DATE('''||'&&hiredate'',''DD-MON-YYYY'')'))
AS my_col FROM dual;

SELECT last_name FROM employees &dyn_where_clause;

Generating a Dynamic Predicate
The example on the slide generates a SELECT statement that retrieves data of all employees in a
department who were hired on a specific day. The script generates the WHERE clause
dynamically.
Note: After the user variable is in place, you must use the UNDEFINE command to delete it.
The first SELECT statement prompts you to enter the department number. If you do not enter
any department number, the department number is treated as null by the DECODE function, and
the user is then prompted for the hire date. If you do not enter any hire date, the hire date is
treated as null by the DECODE function and the dynamic WHERE clause that is generated is also a
null, which causes the second SELECT statement to retrieve all rows from the EMPLOYEES
table.
Note: The NEW_V[ALUE]variable specifies a variable to hold a column value. You can
reference the variable in TTITLE commands. Use NEW_VALUE to display column values or the
date in the top title. You must include the column in a BREAK command with the SKIP PAGE
action. The variable name cannot contain a pound sign (#). NEW_VALUE is useful for
master/detail reports in which there is a new master record for each page.

Oracle Database 10g: SQL Fundamentals II C-10

Generating a Dynamic Predicate (continued)
Note: Here, the hire date must be entered in DD-MON-YYYY format.
The SELECT statement on the previous slide can be interpreted as follows:

IF (<<deptno>> is not entered) THEN
IF (<<hiredate>> is not entered) THEN

return empty string
ELSE

return the string ‘WHERE hire_date =
TO_DATE('<<hiredate>>', 'DD-MON-YYYY')’
ELSE

IF (<<hiredate>> is not entered) THEN
return the string ‘WHERE department_id =

<<deptno>> entered'
ELSE

return the string ‘WHERE department_id =
<<deptno>> entered

AND hire_date =
TO_DATE(' <<hiredate>>', 'DD-MON-YYYY')’

END IF

The returned string becomes the value of the variable DYN_WHERE_CLAUSE, which will be
used in the second SELECT statement.
When the first example on the slide is executed, the user is prompted for the values for DEPTNO
and HIREDATE:

The following value for MY_COL is generated:

When the second example on the slide is executed, the following output is generated:

Oracle Database 10g: SQL Fundamentals II C-11

Copyright © 2004, Oracle. All rights reserved.C-11

Summary

In this appendix, you should have learned the
following:
• You can write a SQL script to generate another

SQL script.
• Script files often use the data dictionary.
• You can capture the output in a file.

Summary
SQL can be used to generate SQL scripts. These scripts can be used to avoid repetitive coding,
drop or re-create objects, get help from the data dictionary, and generate dynamic predicates that
contain run-time parameters.
iSQL*Plus commands can be used to capture the reports generated by the SQL statements and
clean up the output that is generated, such as suppressing headings, feedback messages, and so
on.

Copyright © 2004, Oracle. All rights reserved.

Oracle Architectural Components

Oracle Database 10g: SQL Fundamentals II D-2

D-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:
• Describe the Oracle server architecture and its

main components
• List the structures involved in connecting a user

to an Oracle instance
• List the stages in processing:

– Queries
– DML statements
– Commits

Objectives
This appendix introduces the Oracle server architecture by describing the files, processes, and
memory structures involved in establishing a database connection and executing a SQL
command.

Oracle Database 10g: SQL Fundamentals II D-3

D-3 Copyright © 2004, Oracle. All rights reserved.

Oracle Database Architecture: Overview

The Oracle database consists of two main
components:
• The database or the physical structures
• The instance or the memory structures

Oracle Database Architecture: Overview
The Oracle database consists of two main components—the instance and the database itself.

• The database consists of the physical files such as:
- The control file where the database configuration is stored
- The redo log files that have information required for database recovery
- The data files where all data is stored
- The parameter file which contains the parameters that control the size and properties

of an instance
- The password file which contains the super user or SYSDBA password

• The instance consists of the System Global Area (SGA) and the server processes that
perform tasks within the database.

Oracle Database 10g: SQL Fundamentals II D-4

D-4 Copyright © 2004, Oracle. All rights reserved.

Database Physical Architecture

Data files Online redo log files

Password fileParameter file

Control files

Archive log files

Database Physical Architecture
The files that make up an Oracle database are organized into the following:

• Control files: These files contain data about the database itself, called the metadata. These
files are critical to the database. Without them you cannot open the data files to access the
data within the database.

• Data files: These files contain the data of the database.
• Online redo log files: These files allow for instance recovery of the database. If the

database were to crash and not lose any data files, the instance will be able to recover the
database with the information in these files.

There are other files which are not officially part of the database but are important to the
successful running of the database. These are:

• Parameter file: The parameter file is used to define how the instance will be configured
when it starts up.

• Password file: This file allows users to connect remotely to the database and perform
administrative tasks.

• Archive log files: These files contain an ongoing history of the redo generated by the
instance. These files allow for database recovery. By using these files and a backup of the
database, it is possible to recover a lost data file.

Oracle Database 10g: SQL Fundamentals II D-5

D-5 Copyright © 2004, Oracle. All rights reserved.

Control Files

• Contains physical database structure information
• Multiplexed to protect against loss
• Read at mount stage

Control files

Control Files
When you start the instance and mount the database, the control file is read. The entries in the
control file specify the physical files that constitute the database.
When you add additional files to your database, the control file is automatically updated.
The location of the control files is specified in an initialization parameter.
To protect against failure of the database due to the loss of the control file, you should multiplex
the control file on at least three different physical devices. By specifying multiple files through
the initialization parameter, you enable the Oracle database server to maintain multiple copies of
the control file.

Oracle Database 10g: SQL Fundamentals II D-6

D-6 Copyright © 2004, Oracle. All rights reserved.

Redo Log Files

• Record changes to the database
• Multiplexed to protect against loss

Redo log
buffer

Log
Writer
LGWR

Group 1 Group 2 Group 3

Redo Log Files
Redo log files are used to record changes to the database as a result of transactions and internal
Oracle database server actions. They protect the database from loss of integrity due to system
failures caused by power outages, disk failures, and so on. Redo log files should be multiplexed
to ensure that the information stored in them is not lost in the event of a disk failure.
The redo log consists of groups of redo log files. A group consists of a redo log file and its
multiplexed copies. Each identical copy is said to be a member of that group and each group is
identified by a number. The log writer process (LGWR) writes redo records from the redo log
buffer to a redo log group until the file is filled or a log switch operation is requested. Then it
switches and writes to the files in the next group. The redo log groups are used in a circular
fashion.

Oracle Database 10g: SQL Fundamentals II D-7

D-7 Copyright © 2004, Oracle. All rights reserved.

Tablespaces and Data Files

• Tablespaces consist of one or more data files.
• Data files belong to only one tablespace.

USERS tablespace

Data file 1 Data file 2

Tablespaces and Data Files
A database is divided into logical storage units called tablespaces, which can be used to group
related logical structures. Each database is logically divided into one or more tablespaces. One or
more data files are explicitly created for each tablespace to physically store the data of all logical
structures in a tablespace.
Note: You can also create bigfile tablespaces, which are tablespaces with a single, but very
large (up to 4 G blocks) data file. Traditional smallfile tablespaces (which are the default),
can contain multiple data files, but the files cannot be as large. For more information about
bigfile tablespaces, refer to the Database Administrator’s Guide.

Oracle Database 10g: SQL Fundamentals II D-8

D-8 Copyright © 2004, Oracle. All rights reserved.

Segments, Extents, and Blocks

• Segments exist within a tablespace.
• Segments consist of a collection of extents.
• Extents are a collection of data blocks.
• Data blocks are mapped to OS blocks.

Segment Extents Data
blocks

OS
blocks

Segments, Extents, and Blocks
Database objects such as tables and indexes are stored in tablespaces as segments. Each segment
contains one or more extents. An extent consists of contiguous data blocks, which means that
each extent can exist only in one data file. Data blocks are the smallest unit of I/O in the
database.
When the database requests a set of data blocks from the OS, the OS maps this to the actual OS
block on the storage device. Because of this, you need not be aware of the physical address of
any of the data in your database. This also means that a data file can be striped and or mirrored
on several disks.
The size of the data block can be set at database creation time. The default size of 8 K is
adequate for most databases. If your database supports a data warehouse application that has
large tables and indexes, then a larger block may be beneficial. If your database supports a
transactional application where reads and write are very random, then specifying a smaller block
size may be beneficial. The maximum block size is dependent on your OS. The minimum block
size is 2 K and should rarely (if ever) be used.
You can have tablespaces with different block sizes. Generally this should be used only to
support transportable tablespaces. For details, refer to the Database Administrator’s Guide.

Oracle Database 10g: SQL Fundamentals II D-9

D-9 Copyright © 2004, Oracle. All rights reserved.

Oracle Instance Management

System
Monitor
SMON

Database
Writer
DBW0

Log
Writer
LGWR

Process
Monitor
PMON

Archiver
ARC0

SGA

Java pool

Shared pool Large poolStreams pool

Database
buffer cache

Redo log
buffer

Check
point
CKPT

Oracle Instance Management
An Oracle database server consists of an Oracle database and an Oracle instance. An Oracle
instance consists of memory buffers known as the System Global Area (SGA) and background
processes.
The instance is idle (nonexistent) until it is started. When the instance is started, an initialization
parameter file is read and the instance is configured accordingly.
After the instance is started and the database is opened, users can access the database.

Oracle Database 10g: SQL Fundamentals II D-10

D-10 Copyright © 2004, Oracle. All rights reserved.

Oracle Memory Structures

Java pool Database
buffer cache

Redo log
buffer

Shared pool Large pool

SGA

Streams pool

Server
process

1
PGA

Server
process

2
PGA

Back-
ground
process

PGA

Oracle Memory Structures
The basic memory structures associated with an Oracle instance include:

• System Global Area (SGA): Shared by all server and background processes
• Program Global Area (PGA): Private to each server and background process; there is one

PGA for each process
The System Global Area (SGA) is a shared memory area that contains data and control
information for the instance.
The SGA consists of the following data structures:

• Database buffer cache: Caches blocks of data retrieved from the database
• Redo log buffer: Caches redo information (used for instance recovery) until it can be

written to the physical redo log files stored on disk
• Shared pool: Caches various constructs that can be shared among users
• Large pool: Optional area used for buffering large I/O requests
• Java pool: Used for all session-specific Java code and data within the Java Virtual

Machine (JVM)
• Streams pool: Used by Oracle Streams

When you start the instance using Enterprise Manager or SQL*Plus, the memory allocated for
the SGA is displayed.

Oracle Database 10g: SQL Fundamentals II D-11

Oracle Memory Structures (continued)
With the dynamic SGA infrastructure, the size of the database buffer cache, the shared pool, the
large pool, the Java pool, and the Streams pool can be changed without shutting down the
instance.
The preconfigured database has been pretuned with adequate settings for the memory
parameters. However, as your database usage expands you may find it necessary to alter the
settings of the memory parameters.
Oracle provides alerts and advisors to identify memory sizing problems and to help you
determine appropriate values for memory parameters.
A Program Global Area (PGA) is a memory region which contains data and control information
for each server process. A server process services a client’s requests. Each server process has its
own private PGA area that is created when the server process is started. Access to it is exclusive
to that server process, and is read and written only by Oracle code acting on behalf of it.
The amount of PGA memory used and its content depends on whether the instance is configured
in shared server mode. Generally, the PGA contains the following:

• Private SQL area: Contains data such as bind information and run-time memory
structures. Each session that issues a SQL statement has a private SQL area.

• Session memory: Memory allocated to hold session variables and other information
related to the session

Oracle Database 10g: SQL Fundamentals II D-12

D-12 Copyright © 2004, Oracle. All rights reserved.

Oracle Processes

System
monitor
SMON

Database
writer
DBW0

Check
point
CKPT

Log
writer
LGWR

Process
monitor
PMON

Archiver
ARC0

Server
process

Server
process

Server
process

Server
process

System Global Area
SGA

Background processes

Oracle Processes
When you invoke an application program or an Oracle tool such as Enterprise Manager, the
Oracle server creates a server process to execute commands issued by the application.
Oracle also creates a set of background processes for an instance that interact with each other
and with the operating system to manage the memory structures, asynchronously perform I/O to
write data to disk, and do general housekeeping.
Which background processes are present depends upon the features that are being used in the
database. The most common background processes are the following:

• System monitor (SMON): Performs crash recovery when the instance is started following
a failure

• Process monitor (PMON): Performs process cleanup when a user process fails
• Database writer (DBWn): Writes modified blocks from the database buffer cache to the

files on disk
• Checkpoint (CKPT): Signals DBWn at checkpoints and updates all of the data files and

control files of the database to indicate the most recent checkpoint
• Log writer (LGWR): Writes redo log entries to disk
• Archiver (ARCn): Copies the redo log files to archival storage when the log files are full

or a log switch occurs

Oracle Database 10g: SQL Fundamentals II D-13

D-13 Copyright © 2004, Oracle. All rights reserved.

Other Key Physical Structures

Archived
log files

Parameter
file

Password
file Database

Other Key Files
The Oracle server also uses other files that are not part of the database:

• The parameter file defines the characteristics of an Oracle instance. For example, it
contains parameters that size some of the memory structures in the SGA.

• The password file authenticates which users are permitted to start up and shut down an
Oracle instance.

• Archived redo log files are offline copies of the redo log files that may be necessary for
recovery from media failures.

Oracle Database 10g: SQL Fundamentals II D-14

D-14 Copyright © 2004, Oracle. All rights reserved.

Processing a SQL Statement

• Connect to an instance using:
– The user process
– The server process

• The Oracle server components that are used
depend on the type of SQL statement:
– Queries return rows
– DML statements log changes
– Commit ensures transaction recovery

• Some Oracle server components do not
participate in SQL statement processing.

Components Used to Process SQL
Not all of the components of an Oracle instance are used to process SQL statements. The user
and server processes are used to connect a user to an Oracle instance. These processes are not
part of the Oracle instance, but are required to process a SQL statement.
Some of the background processes, SGA structures, and database files are used to process SQL
statements. Depending on the type of SQL statement, different components are used:

• Queries require additional processing to return rows to the user.
• Data manipulation language (DML) statements require additional processing to log the

changes made to the data.
• Commit processing ensures that the modified data in a transaction can be recovered.

Some required background processes do not directly participate in processing a SQL statement
but are used to improve performance and to recover the database.
The optional background process, ARC0, is used to ensure that a production database can be
recovered.

Oracle Database 10g: SQL Fundamentals II D-15

D-15 Copyright © 2004, Oracle. All rights reserved.

Connecting to an Instance

User Server

ServerUser

Client

User Server

Oracle server

ServerApplication server

Browser

Processes Used to Connect to an Instance
Before users can submit SQL statements to the Oracle server, they must connect to an instance.
The user starts a tool such as iSQL*Plus or runs an application developed using a tool such as
Oracle Forms. This application or tool is executed in a user process.
In the most basic configuration, when a user logs on to the Oracle server, a process is created on
the computer running the Oracle server. This process is called a server process. The server
process communicates with the Oracle instance on behalf of the user process that runs on the
client. The server process executes SQL statements on behalf of the user.
Connection
A connection is a communication pathway between a user process and an Oracle server. A
database user can connect to an Oracle server in one of three ways:

• The user logs on to the operating system running the Oracle instance and starts an
application or tool that accesses the database on that system. The communication pathway
is established using the interprocess communication mechanisms available on the host
operating system.

Oracle Database 10g: SQL Fundamentals II D-16

Processes Used to Connect to an Instance (continued)
Connection (continued)

• The user starts the application or tool on a local computer and connects over a network to
the computer running the Oracle instance. In this configuration, called client/server,
network software is used to communicate between the user and the Oracle server.

• In a three-tiered connection, the user’s computer communicates over the network to an
application or a network server, which is connected through a network to the machine
running the Oracle instance. For example, the user runs a browser on a network computer
to use an application residing on an NT server that retrieves data from an Oracle database
running on a UNIX host.

Sessions
A session is a specific connection of a user to an Oracle server. The session starts when the user
is validated by the Oracle server, and it ends when the user logs out or when there is an abnormal
termination. For a given database user, many concurrent sessions are possible if the user logs on
from many tools, applications, or terminals at the same time. Except for some specialized
database administration tools, starting a database session requires that the Oracle server be
available for use.
Note: The type of connection explained here, where there is a one-to-one correspondence
between a user and server process, is called a dedicated server connection.

Oracle Database 10g: SQL Fundamentals II D-17

D-17 Copyright © 2004, Oracle. All rights reserved.

Processing a Query

• Parse:
– Search for identical statement
– Check syntax, object names, and privileges
– Lock objects used during parse
– Create and store execution plan

• Execute: Identify rows selected
• Fetch: Return rows to user process

Query Processing Steps
Queries are different from other types of SQL statements because, if successful, they return data
as results. Whereas other statements simply return success or failure, a query can return one row
or thousands of rows.
There are three main stages in the processing of a query:

• Parse
• Execute
• Fetch

During the parse stage, the SQL statement is passed from the user process to the server process,
and a parsed representation of the SQL statement is loaded into a shared SQL area.
During the parse, the server process performs the following functions:

• Searches for an existing copy of the SQL statement in the shared pool
• Validates the SQL statement by checking its syntax
• Performs data dictionary lookups to validate table and column definitions

The execute fetch executes the statement using the best optimizer approach and the fetch
retrieves the rows back to the user.

Oracle Database 10g: SQL Fundamentals II D-18

D-18 Copyright © 2004, Oracle. All rights reserved.

The Shared Pool

• The library cache contains the SQL statement text,
parsed code, and execution plan.

• The data dictionary cache contains table, column,
and other object definitions and privileges.

• The shared pool is sized by SHARED_POOL_SIZE.

Data dictionary
cache

Library
cache

Shared pool

Shared Pool Components
During the parse stage, the server process uses the area in the SGA known as the shared pool to
compile the SQL statement. The shared pool has two primary components:

• Library cache
• Data dictionary cache

Library Cache
The library cache stores information about the most recently used SQL statements in a memory
structure called a shared SQL area. The shared SQL area contains:

• The text of the SQL statement
• The parse tree: A compiled version of the statement
• The execution plan: The steps to be taken when executing the statement

The optimizer is the function in the Oracle server that determines the optimal execution plan.
If a SQL statement is re-executed and a shared SQL area already contains the execution plan for
the statement, the server process does not need to parse the statement. The library cache
improves the performance of applications that reuse SQL statements by reducing parse time and
memory requirements. If the SQL statement is not reused, it is eventually aged out of the library
cache.

Oracle Database 10g: SQL Fundamentals II D-19

Shared Pool Components (continued)
Data Dictionary Cache
The data dictionary cache, also known as the dictionary cache or row cache, is a collection of the
most recently used definitions in the database. It includes information about database files,
tables, indexes, columns, users, privileges, and other database objects.
During the parse phase, the server process looks for the information in the dictionary cache to
resolve the object names specified in the SQL statement and to validate the access privileges. If
necessary, the server process initiates the loading of this information from the data files.
Sizing the Shared Pool
The size of the shared pool is specified by the initialization parameter SHARED_POOL_SIZE.

Oracle Database 10g: SQL Fundamentals II D-20

D-20 Copyright © 2004, Oracle. All rights reserved.

Database Buffer Cache

• Stores the most recently used blocks
• Size of a buffer based on DB_BLOCK_SIZE
• Number of buffers defined by DB_BLOCK_BUFFERS

Database buffer
cache

Function of the Database Buffer Cache
When a query is processed, the server process looks in the database buffer cache for any blocks it
needs. If the block is not found in the database buffer cache, the server process reads the block
from the data file and places a copy in the buffer cache. Because subsequent requests for the
same block may find the block in memory, the requests may not require physical reads. The
Oracle server uses a least recently used algorithm to age out buffers that have not been accessed
recently to make room for new blocks in the buffer cache.
Sizing the Database Buffer Cache
The size of each buffer in the buffer cache is equal to the size of an Oracle block, and it is
specified by the DB_BLOCK_SIZE parameter. The number of buffers is equal to the value of
the DB_BLOCK_BUFFERS parameter.

Oracle Database 10g: SQL Fundamentals II D-21

D-21 Copyright © 2004, Oracle. All rights reserved.

Program Global Area (PGA)

• Not shared
• Writable only by the server process
• Contains:

– Sort area
– Session information
– Cursor state
– Stack space

Server
process

PGA

Program Global Area Components
A Program Global Area (PGA) is a memory region that contains data and control information for
a server process. It is a nonshared memory created by Oracle when a server process is started.
Access to it is exclusive to that server process, and is read and written only by the Oracle server
code acting on behalf of it. The PGA memory allocated by each server process attached to an
Oracle instance is referred to as the aggregated PGA memory allocated by the instance.
In a dedicated server configuration, the PGA of the server includes the following components:
• Sort area: Used for any sorts that may be required to process the SQL statement
• Session information: Includes user privileges and performance statistics for the session
• Cursor state: Indicates the stage in the processing of the SQL statements that are currently

used by the session
• Stack space: Contains other session variables

The PGA is allocated when a process is created and deallocated when the process is terminated.

Oracle Database 10g: SQL Fundamentals II D-22

D-22 Copyright © 2004, Oracle. All rights reserved.

Processing a DML Statement

UPDATE

employees ...

SGA

Redo log
buffer

Database
buffer
cache

Shared poolUser
process

Server
process

Database

Data
files

Control
files

Redo
log files

1

1 2 34

DML Processing Steps
A data manipulation language (DML) statement requires only two phases of processing:

• Parse is the same as the parse phase used for processing a query.
• Execute requires additional processing to make data changes.

DML Execute Phase
To execute a DML statement:

• If the data and rollback blocks are not already in the buffer cache, the server process reads
them from the data files into the buffer cache.

• The server process places locks on the rows that are to be modified.
• In the redo log buffer, the server process records the changes to be made to the rollback and

data.
• The rollback block changes record the values of the data before it is modified. The rollback

block is used to store the before image of the data, so that the DML statements can be
rolled back if necessary.

• The data block changes record the new values of the data.

Oracle Database 10g: SQL Fundamentals II D-23

DML Processing Steps (continued)
DML Execute Phase (continued)
The server process records the before image to the rollback block and updates the data block.
Both of these changes are done in the database buffer cache. Any changed blocks in the buffer
cache are marked as dirty buffers; that is, buffers that are not the same as the corresponding
blocks on the disk.
The processing of a DELETE or INSERT command uses similar steps. The before image for a
DELETE contains the column values in the deleted row, and the before image of an INSERT
contains the row location information.
Because the changes made to the blocks are only recorded in memory structures and are not
written immediately to disk, a computer failure that causes the loss of the SGA can also lose
these changes.

Oracle Database 10g: SQL Fundamentals II D-24

D-24 Copyright © 2004, Oracle. All rights reserved.

Redo Log Buffer

• Has its size defined by LOG_BUFFER
• Records changes made through the instance
• Is used sequentially
• Is a circular buffer

Database buffer
cache

Redo Log Buffer Characteristics
The server process records most of the changes made to data file blocks in the redo log buffer,
which is a part of the SGA. The redo log buffer has the following characteristics:

• Its size in bytes is defined by the LOG_BUFFER parameter.
• It records the block that is changed, the location of the change, and the new value in a redo

entry. A redo entry makes no distinction between the type of block that is changed; it only
records which bytes are changed in the block.

• The redo log buffer is used sequentially, and changes made by one transaction may be
interleaved with changes made by other transactions.

• It is a circular buffer that is reused after it is filled, but only after all the old redo entries are
recorded in the redo log files.

Oracle Database 10g: SQL Fundamentals II D-25

D-25 Copyright © 2004, Oracle. All rights reserved.

Rollback Segment

DML statement

Old image

New image
Rollback segment

Table

Rollback Segment
Before making a change, the server process saves the old data value in a rollback segment. This
before image is used to:

• Undo the changes if the transaction is rolled back
• Provide read consistency by ensuring that other transactions do not see uncommitted

changes made by the DML statement
• Recover the database to a consistent state in case of failures

Rollback segments, such as tables and indexes, exist in data files, and rollback blocks are
brought into the database buffer cache as required. Rollback segments are created by the DBA.
Changes to rollback segments are recorded in the redo log buffer.

Oracle Database 10g: SQL Fundamentals II D-26

D-26 Copyright © 2004, Oracle. All rights reserved.

COMMIT Processing

1

3

4

Instance

SGA

Redo log
buffer

Database
buffer
cache

Shared pool

LGWR

2User
process

Server
process

Database

Data
files

Control
files

Redo
log files

Fast COMMIT
The Oracle server uses a fast commit mechanism that guarantees that the committed changes can
be recovered in case of instance failure.
System Change Number
Whenever a transaction commits, the Oracle server assigns a commit system change number
(SCN) to the transaction. The SCN is monotonically incremented and is unique within the
database. It is used by the Oracle server as an internal time stamp to synchronize data and to
provide read consistency when data is retrieved from the data files. Using the SCN enables the
Oracle server to perform consistency checks without depending on the date and time of the
operating system.
Steps in Processing COMMITs
When a COMMIT is issued, the following steps are performed:

• The server process places a commit record, along with the SCN, in the redo log buffer.
• LGWR performs a contiguous write of all the redo log buffer entries up to and including

the commit record to the redo log files. After this point, the Oracle server can guarantee
that the changes will not be lost even if there is an instance failure.

Oracle Database 10g: SQL Fundamentals II D-27

Fast COMMIT (continued)
Steps in Processing COMMITs (continued)

• The user is informed that the COMMIT is complete.
• The server process records information to indicate that the transaction is complete and that

resource locks can be released.
Flushing of the dirty buffers to the data file is performed independently by DBW0 and can occur
either before or after the commit.
Advantages of the Fast COMMIT
The fast commit mechanism ensures data recovery by writing changes to the redo log buffer
instead of the data files. It has the following advantages:

• Sequential writes to the log files are faster than writing to different blocks in the data file.
• Only the minimal information that is necessary to record changes is written to the log files,

whereas writing to the data files would require whole blocks of data to be written.
• If multiple transactions request to commit at the same time, the instance piggybacks redo

log records into a single write.
• Unless the redo log buffer is particularly full, only one synchronous write is required per

transaction. If piggybacking occurs, there can be less than one synchronous write per
transaction.

• Because the redo log buffer may be flushed before the COMMIT, the size of the transaction
does not affect the amount of time needed for an actual COMMIT operation.

Note: Rolling back a transaction does not trigger LGWR to write to disk. The Oracle server
always rolls back uncommitted changes when recovering from failures. If there is a failure after
a rollback, before the rollback entries are recorded on disk, the absence of a commit record is
sufficient to ensure that the changes made by the transaction are rolled back.

Oracle Database 10g: SQL Fundamentals II D-28

D-28 Copyright © 2004, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to:
• Identify database files: data files, control files, and

online redo logs
• Describe SGA memory structures: DB buffer

cache, shared SQL pool, and redo log buffer
• Explain primary background processes:

DBW0, LGWR, CKPT, PMON, SMON, and ARC0
• List SQL processing steps: parse, execute, fetch

Summary
Oracle Database Files
The Oracle database includes the following files:

• Control files: Contain information required to verify the integrity of the database,
including the names of the other files in the database (The control files are usually
mirrored.)

• Data files: Contain the data in the database, including tables, indexes, rollback segments,
and temporary segments

• Online redo logs: Contain the changes made to the data files (Online redo logs are used for
recovery and are usually mirrored.)

Other files commonly used with the database include:
• Parameter file: Defines the characteristics of an Oracle instance
• Password file: Authenticates privileged database users
• Archived redo logs: Are backups of the online redo logs

Oracle Database 10g: SQL Fundamentals II D-29

Summary (continued)
SGA Memory Structures
The System Global Area (SGA) has three primary structures:

• Shared pool: Stores the most recently executed SQL statements and the most recently used
data from the data dictionary

• Database buffer cache: Stores the most recently used data
• Redo log buffer: Records changes made to the database using the instance

Background Processes
A production Oracle instance includes the following processes:

• Database writer (DBW0): Writes changed data to the data files
• Log writer (LGWR): Records changes to the data files in the online redo log files
• System monitor (SMON): Checks for consistency and initiates recovery of the database

when the database is opened
• Process monitor (PMON): Cleans up the resources if one of the processes fails
• Checkpoint process (CKPT): Updates the database status information after a checkpoint
• Archiver (ARC0): Backs up the online redo log to ensure recovery after a media failure

(This process is optional, but is usually included in a production instance.)
Depending on its configuration, the instance may also include other processes.
SQL Statement Processing Steps
The steps used to process a SQL statement include:

• Parse: Compiles the SQL statement
• Execute: Identifies selected rows or applies DML changes to the data
• Fetch: Returns the rows queried by a SELECT statement

	CSG_1.pdf
	Intro.pdf
	Les01.pdf
	Les02.pdf
	Les03.pdf
	Les04.pdf
	Les05.pdf
	Les06.pdf
	Les07.pdf
	Les08.pdf
	App_b.pdf
	App_c.pdf
	App_d.pdf

