
 http://wikistudent.ws/Unisa

TABLE OF CONTENTS

Chapter 3 : Relation Database Model...5

1.1 A Logical View Of Data ... 5

1.1.1 Characteristics of a Relational Table ... 5

1.1.2 Keys .. 5

1.2 Integrity Rules .. 6

1.2.1 Entity Integrity ... 6

1.2.2 Referential Integrity ... 6

1.3 Relational Set Operators ... 6

1.4 Data Dictionary and The System Catalog ... 8

1.4.1 Data dictionary ... 8

1.4.2 System Catalog ... 8

1.5 Relationships Within The Relational Database ... 8

1.5.1 One-To-Many Relationship ... 8

1.5.2 One-To-One Relationship .. 8

1.5.3 Many-To-Many Relationship .. 9

1.6 Data Redundancy Revisited ... 9

1.7 Indexes ... 9

1.8 CODDs Relational Database Rules .. 9

Chapter 4 : Entity Relationship Modeling...10

1.9 Entity Relationship Model ... 10

1.9.1 Entities .. 10

1.9.2 Attributes ... 10

1.9.3 Relationships .. 12

1.9.4 Connectivity and Cardinality ... 12

1.9.5 Existence Dependence .. 12

1.9.6 Relationship Strength ... 12

1.9.7 Weak entities .. 13

1.9.8 Relationship Participation .. 13

1.9.9 Relationship Degree .. 13

1.9.10 Recursive relationships ... 14

1.9.11 Composite Entities .. 14

1.10 Developing An Entity Relationship Diagram ... 14

1.11 Database Design Challenges: Conflicting Goals .. 14

Chapter 5 : Normalization of Database Tables..15

 http://wikistudent.ws/Unisa

1.12 Database Tables And Normalization .. 15

1.13 The Normalization Process .. 15

1.13.1 Conversion to First Normal Form ... 15

1.13.2 Conversion To Second Normal Form ... 16

1.13.3 Conversion To Third Normal Form .. 17

1.14 Improving The Design .. 17

1.15 Surrogate Key Considerations .. 18

1.16 Higher Level Normal Forms ... 18

1.16.1 The Boyce-Codd Normal Form ... 18

1.16.2 Fourth Normal Form .. 18

1.17 Normalization and Database Design .. 18

1.18 Denormalization .. 18

Chapter 6 : Advanced Data Modeling..19

1.19 The Extended Entity Relationship Model ... 19

1.19.1 Entity Supertypes and Subtypes .. 19

1.19.2 Specialization Hierarchy ... 19

1.19.3 Inheritance ... 20

1.19.4 Subtype Discriminator ... 20

1.19.5 Disjoint and Overlapping Constraints ... 20

1.19.6 Completeness Constraint .. 20

1.19.7 Specialization and Generalization ... 20

1.20 Entity Clustering ... 20

1.21 Entity Integrity: Selecting Primary Keys ... 21

1.21.1 Natural Keys and Primary Keys ... 21

1.21.2 Primary Key Guidelines ... 21

1.21.3 When To Use Composite Primary Keys .. 21

1.21.4 When To Use Surrogate Primary Keys .. 21

1.22 Design Cases: Learning Flexible Database Design .. 22

1.22.1 Implementing One To One Relationships .. 22

1.22.2 Maintaining History of Time Variant Data ... 22

1.22.3 Fan Traps .. 22

1.22.4 Redundant Relationships ... 22

1.23 Data Modeling Checklist .. 22

Chapter 10 : Transaction Management and Concurrency Control..24

1.24 What Is A Transaction .. 24

 http://wikistudent.ws/Unisa

1.24.1 Evaluating Transaction Results .. 24

1.24.2 Transaction Properties .. 24

1.24.3 Transaction Management With SQL ... 25

1.24.4 The Transaction Log ... 25

1.25 Concurrency Control ... 25

1.25.1 The Scheduler .. 26

1.26 Concurrency Control With Locking Methods .. 26

1.26.1 Lock Granularity ... 26

1.26.2 Lock Types .. 26

1.26.3 Two Phase Locking To Ensure Serializability .. 26

1.26.4 Deadlocks .. 27

1.27 Concurrency Control With Time Stamping Methods ... 27

1.27.1 Wait Die and Wound Wait Schemes ... 27

1.28 Concurrency Control With Optimistic Methods ... 27

1.29 Database Recovery Management ... 28

1.29.1 Transaction Recovery .. 28

Chapter 12 : Distributed Database Management Systems...28

1.30 The Evolution of Distributed Database Management Systems .. 29

1.31 Advantages And Disadvantages ... 29

1.32 Distributed Processing and Distributed Databases .. 29

1.33 Characteristics of Distributed Database Management Systems .. 29

1.34 Distributed Database Management System Components .. 30

1.35 Levels of Data and Process Distribution ... 31

1.35.1 Single-Site Processing, Single-Site Data .. 31

1.35.2 Multiple-Site Processing, Singe-Site Data .. 31

1.35.3 Multiple-Site Processing, Multiple-Site Data .. 31

1.36 Distributed Database Transparency Features .. 31

1.37 Distribution Transparency ... 32

1.38 Transaction Transparency ... 32

1.38.1 Distributed Requests and Distributed Transactions ... 32

1.38.2 Distributed Concurrency Control .. 32

1.38.3 Two-Phase Commit Protocol ... 33

1.39 Performance Transparency and Query Optimization ... 33

1.40 Distributed Database Design ... 33

1.40.1 Data Fragmentation .. 34

 http://wikistudent.ws/Unisa

1.40.2 Data Replication ... 34

1.40.3 Data Allocation .. 34

1.41 Client Server versus Distributed Database Management System ... 35

1.42 C.J Dates Twelve Commandments For Distributed Databases ... 35

Chapter 14 : Database Connectivity and Web Development...36

1.43 Database Connectivity .. 36

1.43.1 Native SQL Connectivity .. 36

1.43.2 Open Database Connectivity and Data or Remote Access Objects ... 36

1.43.3 Object Linking and Embedding for Database ... 37

1.43.4 ADO.NET .. 37

1.44 Internet Databases ... 37

1.44.1 Web-To-Database Middleware: Server-Side Extensions ... 38

1.44.2 Web Server Interfaces .. 38

1.44.3 The Web Browser .. 38

1.44.4 Client-Side Extensions ... 38

1.45 Using A Web-To-Database Production Tool : Coldfusion ... 38

1.45.1 The Web As a Stateless System .. 39

 http://wikistudent.ws/Unisa

CHAPTER 3 : RELATION DATABASE MODEL

1.1 A LOGICAL VIEW OF DATA

A relation model enables you to view data logically rather than physically. Therefore tables

play a prominent role in the relational model. A table has the advantages of structural and

data independence, although it still resembles a file from a conceptual point of view.

Because you can think of related records as being stored in independent tables, the

relational database model is much easier to understand that it’s hierarchical and network

database predecessors.

1.1.1 CHARACTERISTICS OF A RELATIONAL TABLE

• A table is perceived as a two-dimensional structure composed of rows and columns.

• Each table row (tuple) represents a single entity occurrence within the entity set.

• Each table column represents an attribute, and each column has a distinct name.

• All values in a column must conform to the same data format.

• Each column has a specific range of values know as the attribute domain.

• The order of the rows and columns is immaterial to the DBMS.

• Each table must have an attribute or a combination of attributes that uniquely

identifies each row.

1.1.2 KEYS

Keys consist of one or more attributes that determine other attributes, and its role is

therefore based on determination. If you know the value of attribute A, you can look up or

determine the value of attribute B. Any attribute that is part of a key is known as a key

attribute.

Within a table, each primary key value must be unique to ensure that each row is uniquely

identified by the primary key. In that case, the table is said to exhibit entity integrity. To

maintain entity integrity, a null value is not permitted in the primary key.

Nulls, if used improperly, can create problems because they have many different

meanings. A null for example can represent an unknown attribute value, or a know, but

missing, attribute value, or a not applicable condition. Depending on the sophistication of

the application development software, nulls can create problems when functions such as

COUNT, AVERAGE, and SUM are used. In addition, nulls can create logical problems when

relational tables are linked. To avoid nulls, some designers use special codes, known as

flags to indicate the absence of some value.

Controlled redundancy makes the relation database work. Tables within the database

share common attributes that enable the tables to be linked together. Multiple

occurrences of values in a table are not redundant when they are required to make the

 http://wikistudent.ws/Unisa

relationship work. Data redundancy exists only when there is unnecessary duplication of

attribute values.

Relational Database Keys can be defined as follows:

• Superkey is an attribute or combination of attributes that uniquely identifies each row

in a table.

• Candidate key is a minimal superkey. A superkey that does not contain a subset of

attributes that is itself a superkey

• Primary key is a candidate key selected to uniquely identify all other attribute values

in any given row. Cannot contain null entries.

• Secondary key is an attribute or combination of attributes used to strictly for data

retrieval purposes.

• Foreign key is an attribute or combination of attributes in one table whose values

must either match the primary key in another table or be null.

1.2 INTEGRITY RULES

1.2.1 ENTITY INTEGRITY

The requirements for entity integrity are that all primary key entries are unique, and no

part of a primary key may be null.

The purpose is that each row will have a unique identity, and foreign key values can

properly reference primary key values.

For example no invoice can have a duplicate number, nor can it be null. In short, all

invoices are uniquely identified by their invoice number.

1.2.2 REFERENTIAL INTEGRITY

The requirements are that a foreign key may have either a null entry, as long as it is not a

part of its table’s primary key, or an entry that matches the primary key value in a table to

which it is related. Every non-null foreign key value must reference an existing primary

key value.

The purpose is that it is possible for an attribute NOT to have a corresponding value, but it

will be impossible to have an invalid entry. The enforcement of the referential integrity

rule makes it impossible to delete a row in one table whose primary key has mandatory

matching foreign key values in another table.

For example a customer might not yet have an assigned sales representative or number,

but it will be impossible to have an invalid sales representative or number.

1.3 RELATIONAL SET OPERATORS

The degree of relational completeness can be defined by the extent to which relational

algebra is supported. Relation algebra defines the theoretical way of manipulating table

contents using the eight relation operators: SELECT, PROJECT, JOIN, INTERSECT, UNION,

 http://wikistudent.ws/Unisa

DIFFERENCE, PRODUCT and DIVIDE. The use of relation operators have the property of

closure, that is the use of relational algebra operators on existing tables or relations

produces new relations.

• UNION combines all rows from two tables, excluding duplicate rows. The tables must

have the same attribute characteristics. When two or more tables share the same

number of columns, when the columns have the same names, and when they share the

same domains, they are said to be union compatible.

• INTERSECT yields only the rows that appear in both tables. The tables must be union

compatible to yield valid results.

• DIFFERENCE yields all rows in one table that are not found in the other table, that is, it

subtracts one table from the other. The tables must be union compatible to yield valid

results.

• PRODUCT yields all possible pairs of rows from two tables also known as the Cartesian

product. Therefore if one table has six rows and the other table has three rows, the

PRODUCT yields a list composed of 6 times 3 = 18 rows.

• SELECT also known as RESTRICT, yields values for all rows found in a table. SELECT

can be used to list all of the row values, or it can yield those row values that match a

specified criterion. SELECT therefore yields a horizontal subset of a table.

• PROJECT yields all values for selected attributes. PROJECT therefore yields a vertical

subset of a table.

• DIVIDE requires the use of one single-column table and one two-column table. U

• JOIN allows information to be combined from two or more tables. It allows the use of

independent tables linked by common attributes.

� Equijoin links tables on the basis of an equality condition that compares specified

columns of each table. The outcome of the equijoin does not eliminate duplicate

columns and the condition or criterion used to join the tables must be explicitly

defined. It gets its name from the use of the = or comparison operator.

� Theta Join is an equijoin that uses one of the other comparison operators.

� Outer Join Matched pairs are retained and any unmatched values in other table

are left null.

� Left outer join yields all the rows in the “left” table, including those that do

not have a matching value in the “right” table.

� Right outer join yields all of the rows in the “right” table, including those that

do not have a matching value in the “left” table.

� Natural Join links tables by selecting only the rows with common values in their

common attributes. A natural join is the result of a three stage process:

 http://wikistudent.ws/Unisa

� First a PRODUCT of the tables is created

� Second a SELECT is performed on the output of the first step to yield only the

rows for which the common attributes values are equal. The common

columns are referred to as the join columns.

� Third a PROJECT is performed on the results of the second step to yield a

single copy of each attribute, thereby eliminating duplicate columns.

The final outcome of a natural join yields a table that does not include unmatched

pairs and provides only the copies of the matches. If no match is made between

the table rows, the new table does not include the unmatched row. Also the

column on which the join was made, occurs only once in the new table.

1.4 DATA DICTIONARY AND THE SYSTEM CATALOG

1.4.1 DATA DICTIONARY

The data dictionary provides a detailed accounting of all tables found within the user or

designer created database. Thus the data dictionary contains at least all of the attribute

names and characteristics for each table in the system. It therefore contains metadata, or

data about data. It is sometimes described as “the database designer’s database” because

it records the design decisions about tables and their structures.

1.4.2 SYSTEM CATALOG

Like the data dictionary the system catalog contains metadata. It can be described as a

detailed system data dictionary that describes all objects within the database. Because

the system catalog contains all required data dictionary information, the terms system

catalog and data dictionary are often interchangeable. The system catalog is actually a

system-created database whose tables store the user or designer created database

characteristics and contents and can therefore be queried like any other user or designer

created database.

1.5 RELATIONSHIPS WITHIN THE RELATIONAL DATABASE

1.5.1 ONE-TO-MANY RELATIONSHIP

The one to many relationships is the relational modeling ideal and should be the norm for

any relational database design. This relationship can be found in any database

environment. For example one course can generate many classes but each class refers to

only one course.

1.5.2 ONE-TO-ONE RELATIONSHIP

The one to one relationship should be rare in any relational database design. In this

relationship one entity can be related to only one other entity, and vice versa. For

example a professor can only chair one department and one department can only have

one department chair. The existence of the one to one relationship sometimes means that

the entity components were not defined properly. It could also indicate that the two

entities actually belong in the same table. As rare as one to one relationships are certain

conditions absolutely require their use.

 http://wikistudent.ws/Unisa

1.5.3 MANY-TO-MANY RELATIONSHIP

Many to many relationships cannot be implemented as such in the relational model but

will be broken to produce a set of one to many relationships. For example a student can

have many classes and each class has many students. Problems with many to many

relationships can be overcome by creating a composite entity or a bridge entity.

1.6 DATA REDUNDANCY REVISITED

Data redundancy leads to data anomalies. Those anomalies can destroy the effectiveness of

the database. It is however possible to control data redundancies by using common

attributes also known as foreign keys, that are shared by tables. The proper use of foreign

keys is crucial to data redundancy control; they however do not eliminate data

redundancies because they can be repeated many times. There are also instances where

data redundancy is necessary.

1.7 INDEXES

An Index is an orderly arrangement used to logically access rows in a table. From a

conceptual point of view, an index is composed of an index key and a set of pointers. The

index key is, in effect, the index’s reference point. More formally, an index is an ordered

arrangement of keys and pointers. Each key points to the location of the data identified by

the key. The index key can have multiple attributes.

A unique index is an index in which the index key can have only one pointer value or row

associated with it.

A table can have many indexes, but each index is associated with only one table.

1.8 CODDS RELATIONAL DATABASE RULES

• Information. All information in a relational database must be logically represented as

column values in rows within tables

• Guaranteed Access. Every value in a table is guaranteed to be accessible through a

combination of table name, primary key value, and column name.

• Systematic Treatment of Nulls. Nulls must be represented and treated in a

systematic way, independent of data type.

• Dynamic On-Line Catalog Based on the Relational Model. The metadata must be

stored and managed as ordinary data, that is, in tables within the database. Such data

must be available to authorized users using the standard database relational language.

• Comprehensive Data Sublanguage. The relational database may support many

languages. However it must support one well defined declarative language with

support for data definition, view definition, data manipulation, integrity constraints,

authorization, and transaction management.

• View Updating. Any view that is theoretically updatable must be updatable through

the system.

 http://wikistudent.ws/Unisa

• High-Level Insert, Update and Delete. The database must support set-level inserts,

updates, and deletes.

• Physical Data Independence. Application programs and ad hoc facilities are logically

unaffected when physical access methods or storage structures are changed.

• Logical Data Independence. Application programs and ad hoc facilities are logically

unaffected when changes are made to the table structures that preserve the original

table values.

• Integrity Independence. All relation integrity constraints must be definable in the

relational language and stored in the system catalog, not at application level.

• Distribution Independence. The end users and application programs are unaware

and unaffected by the data location

• Nonsubversion. If the system supports low-level access to the data, there must not be

a way to bypass the integrity rules of the database.

• Rule Zero. All preceding rules are based on the notion that in order for a database to

be considered relational, it must use its relational facilities exclusively to manage the

database.

CHAPTER 4 : ENTITY RELATIONSHIP MODELING

1.9 ENTITY RELATIONSHIP MODEL

The entity relationship model forms the basis of an entity relationship diagram. The

diagram represents the conceptual database as viewed by the end user. The diagrams

depict the database’s main components, entities, attributes and relationships.

1.9.1 ENTITIES

An entity is an object of interest to the end user. An entity actually refers to the entity set

and not to a single entity occurrence. In other words the word entity in the entity

relationship model corresponds to a table and not to a row in the relational environment.

In model refers to a specific table row as an entity instance or entity occurrence. In both

the Chen and Crow’s Foot models, an entity is represented by a rectangle containing the

entity’s name. The entity name, a noun, is usually written in all capital letters.

1.9.2 ATTRIBUTES

Attributes are characteristics of entities. In the Chen model attributes are represented by

ovals and are connected to the entity rectangle with a line. Each oval contains the name of

the attribute it represents. In the Crow’s Foot model the attributes are written in the

attribute box below the entity rectangle.

 http://wikistudent.ws/Unisa

Attributes have a domain. A domain is the attribute’s set of possible values. The domain

for a persons SEX would be F or M. Attributes may share a domain.

The entity relationship model uses identifiers to uniquely identify each entity instance. In

the relational model, such identifiers are mapped to primary keys in tables. Identifiers are

underlined in the entity relational diagram. Key attributes are also underlined in a

frequently used table structure shorthand notation.

Ideally, a primary key is composed of only a single attribute. It is possible however to use

a composite key. Both key attributes are then underlined in the entity notation.

Attributes are classified as simple or composite. A composite attribute is an attribute that

can be further subdivided to yield additional attributes. For example an ADDRESS can be

subdivided into street, city and zip code. A simple attribute is an attribute that cannot be

subdivided. For example AGE. To facilitate detailed queries, it is usually appropriate to

change composite attributes into a series of simple attributes.

A single valued attribute is an attribute that can have only a single value. For example a

person can only have one identification number.

Multivalued attributes are attributes that can have many values. For example a person

may have several college degrees. If multivalued attributes exists, the designer must

decide on one of the following courses of action:

• Create several new attributes within the original entity, one for each of the original

multivalued attributes. Although this solution seems to work it can lead to major

structural problems in the table.

 http://wikistudent.ws/Unisa

• Create a new entity composed of the original multivalued attribute’s components.

The new independent entity is then related to the original entity in a one to many

relationship.

A derived attribute is an attribute whose value is calculated from other attributes. The

derived attribute need not be physically stored within the database; instead, it can be

derived by using an algorithm. The advantages of storing derived attributes is that it

saves CPU processing cycles, data value is readily available and can be used to keep track

of historical data. The disadvantages of storing are that it requires constant maintenance

to ensure the derived value is current, especially if any values used in the calculation

changes. The advantages of not storing derived attributes are that it saves on storage

space and computation always yields correct values. The disadvantages of not storing

derived attributes are that it uses CPU processing cycles and adds coding complexity to

queries.

1.9.3 RELATIONSHIPS

A relationship is an association between entities. The entities that participate in a

relationship are also knows as participants. The relationship name is an active or passive

verb for example a STUDENT takes a CLASS. Relationships between entities always

operate in both directions and a relationship classification is difficult to establish if you

know only one side of the relationship.

1.9.4 CONNECTIVITY AND CARDINALITY

The term connectivity is used to describe the relationship classification, in other words if it

is a one to one, one to many or many to many relationship.

Cardinality expresses the minimum and maximum number of entity occurrences

associated with one occurrence of the related entity.

Connectivities and cardinalities are established by very concise statements known as

business rules. Such rules, derived from precise and detailed description of an

organization’s data environment, also establish the entity relationship model’s entities,

attributes, relationships, connectivities, cardinalities and constraints.

1.9.5 EXISTENCE DEPENDENCE

An entity is said to be existence dependant if it can exist in the database only when it is

associated with another related entity occurrence. In implementation terms, an entity is

existence dependant if it as has mandatory foreign key of which the attribute cannot be

null.

If an entity can exist apart from one or more related entities, it is said to be existence

independent. Such entities are sometimes referred to as strong or regular entities.

1.9.6 RELATIONSHIP STRENGTH

The concept of relationships strength is based on how the primary key of a related entity

is defined. To implement a relationship, the primary key of one entity appears as a foreign

key in the related entity.

 http://wikistudent.ws/Unisa

A weak relationship, also known as non-identifying relationship, exists if the primary key of

the related entity does not contain a primary key component of the parent entity. By

default, relationships are established by having the primary key in the parent entity

appear as a foreign key on the related entity.

A strong relationship, also know as an identifying relationship, exists when the parent key

of the related entity contains a parent key component of the parent entity.

1.9.7 WEAK ENTITIES

A weak entity is one that meets two conditions:

1. It is existence dependent

2. It has a primary key that is partially or totally derived from the parent entity in the

relationship.

The database designer usually determines whether an entity can be described as weak

based on the business rules.

1.9.8 RELATIONSHIP PARTICIPATION

Participation in an entity relationship is either optional or mandatory.

Optional participation means that one entity occurrence doe not require a corresponding

entity occurrence in a particular relationship. The existence of optionality indicates that

the minimum cardinality is 0 for the optional entity.

Mandatory participation means that one entity occurrence requires a corresponding entity

occurrence in a particular relationship. If no optionality symbol is depicted with the

entity, the entity exists in a mandatory relationship with the related entity. The existence

of a mandatory relationship indicates that the minimum cardinality is 1 for the mandatory

entity.

1.9.9 RELATIONSHIP DEGREE

 http://wikistudent.ws/Unisa

A relationship degree indicates the number of entities or participants associated with a

relationship.

 A unary relationship exists when an association is maintained within a single entity.

A binary relationship exists when two entities are associated.

A ternary relationship exists when three entities are associated.

1.9.10 RECURSIVE RELATIONSHIPS

A recursive relationship is one in which a relationship can exist between occurrences of

the same entity set. It is naturally found within unary relationships

1.9.11 COMPOSITE ENTITIES

Relationships do not contain attributes; the relational model generally requires the use of

one to many relationships. If a may to many relationship is encounter you have create a

bridge entity between the entities displaying such relationships. The bridge entity also

knows as a composite entity is composed of the primary keys of each of the entities to be

connected. A bridge entity can also contain additional attributes that play no role in the

connective process.

1.10 DEVELOPING AN ENTITY RELATIONSHIP DIAGRAM

The process of database design is an iterative rather than linear or sequential process. An

iterative process is one based on repetition of processes and procedures.

Building and entity relationship diagram usually involves the following activities:

• Create a detailed narrative of the organization’s description of operations

• Identify the business rules based on the description of operations

• Identify the main entities and relationships from the business rules

• Develop the initial entity relationship diagram

• Identify the attributes and primary keys that adequately describe the entities.

• Revise and review the entity relationship diagram.

1.11 DATABASE DESIGN CHALLENGES: CONFLICTING GOALS

Database designers often must make design compromises that are triggered by conflicting

goals such as:

• The database design must conform to design standards. Such standards have guided

you in developing logical structures that minimize data redundancies, thereby

minimizing the likelihood that destructive data anomalies will occur.

• In may organizations, particularly those generating large numbers of transactions,

high processing speeds are often a top priority in database design. High processing

speed means minimal access time, which may be achieved by minimizing the number

and complexity of logically desirable relationships.

 http://wikistudent.ws/Unisa

• The quest for timely information might be the focus of database design. Complex

information requirements may dictate data transformations, and they may expand

the number of entities and attributes within the design.

CHAPTER 5 : NORMALIZATION OF DATABASE TABLES

1.12 DATABASE TABLES AND NORMALIZATION

Normalization is a process for evaluating and correcting table structures to minimize data

redundancies, thereby reducing the likelihood of data anomalies. The normalization

process involves assigning attributes to tables based on the concept of determination.

Normalization works through a series of stages called normal forms. The first three stages

are described as first normal form (1NF), second normal form (2NF), and third normal form

(3NF). From a structural point of view second normal form is better than first normal form

and third normal form is better than second normal form. The highest form of

normalization is always the most desirable. Denormalization produces a lower normal

form, that is, a third normal form will be converted to a second normal form through

denormalization.

1.13 THE NORMALIZATION PROCESS

In normalization the objective is to create tables that have the following characteristics:

• Each table represents a single subject.

• No data item will be unnecessarily stored in more than one table. The reason for this

requirement is to ensure that the data are updated in only one place

• All attributes in a table are dependent on the primary key, the entire primary key and

nothing but the primary key.

1.13.1 CONVERSION TO FIRST NORMAL FORM

A repeating group derives its name from the fact that a group of multiple entries of the

same type can exist for any single key attribute occurrence. A relational table must not

contain repeating groups as it is the cause of data redundancies. Normalizing the table

structure will reduce the data redundancies.

The normalization process starts with a simple three-step procedure.

• Step 1 : Eliminate the repeating groups

Start by presenting the data in a tabular format, where each cell has a single value and

there are no repeating groups. To eliminate the repeating groups, eliminate the nulls

by making sure that each repeating group attribute contains an appropriate data

value.

• Step 2 : Identify the primary key

 http://wikistudent.ws/Unisa

The primary key must uniquely identify all of the remaining entity occurrences’

attributes. The new primary key will most likely be composed out of several

attributes.

• Step 3 : Identify all dependencies

Dependencies can be depicted by the help of a diagram known as a dependency

diagram. It can depict the all dependencies found within a given table structure and

give you the bird’s eye view of all of the relationships among a table’s attributes and

their use, making it less likely that you will overlook an important dependency.

Partial dependency is a dependency based on only a part of a composite primary key.

While partial dependencies are sometimes used for performance reasons, they should be

used with caution as they can still cause data redundancies. Transitive dependency is a

dependency of one non prime attribute on another non prime attribute. Transitive

dependencies can still yield data anomalies.

All relation tables satisfy the first normal form requirements

A table is in first normal form when:

• All of the key attributes are defined.

• There are no repeating groups in the table.

• All attributes are dependent on the primary key.

1.13.2 CONVERSION TO SECOND NORMAL FORM

The relational database design can be improved by converting the database into second

normal form and is done in two steps:

 http://wikistudent.ws/Unisa

• Step 1 : Write each key component on a separate line

Write each key component on a separate line with the original key on the last line.

Each component will become a key in a new table. In other words the initial

composite key is now divided into tables.

• Step 2 : Assign corresponding dependent attributes

Determine those attributes that are dependent on other attributes to build the new

tables.

At this point most of the anomalies have been eliminated.

A table is in second normal form when:

• It is in first normal form

• It includes no partial dependencies, that is no attribute is dependant on only part of

the primary key. It is possible that transitive dependencies still exist.

1.13.3 CONVERSION TO THIRD NORMAL FORM

Data anomalies created by the database organization are easily eliminated and the tables

converted to third normal form by completing the following steps:

• Step 1 : Identify each new determinant

For every transitive dependency, write the determinant as a parent key for a new

table. If there are three different transitive dependencies, there are three different

determinants.

• Step 2 : Identify the dependant attributes

Identify the attributes that are dependent on each determinant identified in Step 1

and identify the dependency. Name the table to reflect its contents and function.

• Step 3 : Remove the dependent attributes from transitive dependencies

Eliminate all dependent attributes in the transitive relationships from each o the

tables that have such transitive relationship. Make sure each table has a determinant

and that no table contains inappropriate dependencies.

A table is in third normal form when:

• It is in second normal form.

• It contains no transitive dependencies.

1.14 IMPROVING THE DESIGN

The table structures are now cleared of all transitive and partial dependencies.

Normalization by itself cannot be relied on to make good designs. Instead normalization is

valuable because it eliminates data redundancies.

 http://wikistudent.ws/Unisa

Issues to address in order to produce a good normalized set of tables:

• Evaluate primary key Assignments

• Evaluate Naming Conventions

• Refine Attribute Atomicity

• Identify New Attributes

• Identify New Relationships

• Refine Primary Keys as Required for Data Granularity

• Maintain Historical Accuracy

• Evaluate Using Derived Attributes

1.15 SURROGATE KEY CONSIDERATIONS

When a primary key is considered to be unsuitable, designers must use surrogate keys. At

the implementation level, a surrogate key is a system defined attribute generally created

and managed via the database management system. Usually a system defined surrogate

key is numeric and its value is automatically incremented for each new row.

1.16 HIGHER LEVEL NORMAL FORMS

1.16.1 THE BOYCE-CODD NORMAL FORM

A table is in Boyce-Codd normal form when every determinant in the table is a candidate

key. When a table contains only one candidate key, the third normal form and Boyce-

Codd normal form is equivalent. Boyce-Codd normal form can only be violated when the

table contains more than one candidate key.

1.16.2 FOURTH NORMAL FORM

A table is in fourth normal form when it is in third normal form and has no multiple sets of

multivalued dependencies.

The fourth normal form is largely academic if you make sure that your tables to the

following two rules:

• All attributes must be dependent on the primary key, but they must be independent

of each other

• No row may contain two or more multivalued facts about and entity.

1.17 NORMALIZATION AND DATABASE DESIGN

Normalization should be part of the design process. Therefore, make sure that proposed

entities meet the required normal form before the table structures are created. It is difficult

to separate the normalization process from the entity relationship modeling process; the

two techniques are use in an iterative and incremental process.

1.18 DENORMALIZATION

 http://wikistudent.ws/Unisa

Although the creation of normalized relations is an important database design goal, it is

only one of many such goals. Good database design also considers processing

requirements. As tables are decomposed to conform to normalization requirements, the

number of database tables expands. Joining the larger number of tables takes additional

input output operations and processing logic, thereby reducing system speed.

The conflicts between design efficiency, in formation requirements and processing speed

are often resolved through compromises that may include denormalization. Unnormalized

tables in a production database tend to suffer from these defects:

• Data updates are less efficient because programs that read and update tables must

deal with larger tables

• Indexing is more unmanageable. It simply is not practical to build all of the indexes

required for the many attributes that may be located in a single unnormalized table.

• Unnormalized tables yield no simple strategies for creating virtual tables know as

views.

CHAPTER 6 : ADVANCED DATA MODELING

1.19 THE EXTENDED ENTITY RELATIONSHIP MODEL

As the complexity of the data structure being modeled has increased and as application

software requirements have become more stringent, there has been an increasing need to

capture more information in the data model. The extended entity relationship model is the

result of adding more semantic constructs to the original entity relationship model. A

diagram using this model is called an extended entity relationship diagram.

1.19.1 ENTITY SUPERTYPES AND SUBTYPES

In modeling terms, an entity supertype is a generic entity type that is related to one or

more entity subtype, where the entity supertype contains the common characteristics and

the entity subtypes contain the unique characteristics of each entity subtype.

1.19.2 SPECIALIZATION HIERARCHY

Entity supertypes and subtypes are organized in a specialization hierarchy. The

specialization hierarchy depicts the arrangement of higher-level entity supertypes and

lower level entity subtypes.

The relationships depicted within the specialization hierarchy are sometimes described in

terms of “IS A” relationships. A subtype can only exist within the context of a supertype

and every subtype can have only one supertype to which it is directly related in the

specialization hierarchy. However, a specialization hierarchy can have many levels of

supertype and subtype relationships.

A specialization hierarchy provides the means to:

• Support attribute inheritance

 http://wikistudent.ws/Unisa

• Define a special supertype attribute known as the subtype discriminator

• Define disjoint or overlapping constraints and complete or partial constraints.

1.19.3 INHERITANCE

The property of inheritance enables an entity subtype to inherit the attributes and

relationships of the supertype. All entity subtypes inherit their primary key attribute

from their supertype.

At implementation level, the supertype and its subtypes depicted in the specialization

hierarchy maintain a one to one relationship.

1.19.4 SUBTYPE DISCRIMINATOR

A subtype discriminator is the attribute in the supertype entity that determines to which

entity subtype each supertype occurrence is related. The default comparison condition

for the subtype discriminator attribute is the equality comparison. However, there may

be situations in which the subtype discriminator is not necessarily based on an equality

comparison.

1.19.5 DISJOINT AND OVERLAPPING CONSTRAINTS

An entity supertype can have disjoint or overlapping entity subtypes. Disjoint subtypes

also known as non-overlapping subtypes, are subtypes that contain a unique subset of the

supertype entity set. In other words, each entity instance of the supertype can appear in

only one of the subtypes.

Overlapping subtypes are subtypes that contain non unique subsets of the supertype entity

set, that is, each entity instance of the supertype may appear in more than one subtype.

1.19.6 COMPLETENESS CONSTRAINT

The completeness constraint specifies whether each entity supertype occurrence must also

be a member of at least one subtype. The completeness constraint can be partial or total.

Partial completeness means that not every supertype occurrence is a member of a subtype.

Total completeness means that every supertype occurrence must be a member of at least

one subtype.

1.19.7 SPECIALIZATION AND GENERALIZATION

Specialization is the top-down process of identifying lower-level, more specific entity

subtypes from a higher-level entity supertype. Specialization is based on grouping unique

characteristics and relationships of the subtypes.

Generalization is the bottom-up process of identifying a higher-level, more generic entity

supertype from lower-level entity subtypes. Generalization is based on grouping common

characteristics and relationships of the subtypes.

1.20 ENTITY CLUSTERING

An entity cluster is a “virtual” entity type used to represent multiple entities and

relationships in the entity relationship diagram. An entity cluster is formed by combining

multiple interrelated entities into a single abstract entity object. An entity cluster is

considered “virtual” or “abstract” in the sense that it is not actually an entity in the final

 http://wikistudent.ws/Unisa

entity relationship diagram. The entity cluster is a temporary entity used to represent

multiple entities and relationship with the purpose to simply the entity relationship

diagram and thus enhancing its readability. Avoid the display of attributes when entity

clusters are used.

1.21 ENTITY INTEGRITY: SELECTING PRIMARY KEYS

1.21.1 NATURAL KEYS AND PRIMARY KEYS

A natural key or natural identifier is a real-world generally accepted identifier used to

distinguish real world objects. A data modeler uses a natural identifier as the primary key

of the entity being modeled, assuming that the entity has a natural identifier.

1.21.2 PRIMARY KEY GUIDELINES

Desirable primary key characteristics are:

• Unique values. The primary key must uniquely identify each entity instance. A

primary key must be able to guarantee unique values. It cannot contain nulls.

• Nonintelligent. The primary key should not have embedded semantic meaning.

• No change over time. If an attribute has semantic meaning, it may be subject to

updates. Changing a primary key value means that you are basically changing the

identity of an entity.

• Preferably single attribute. A primary key should have the minimum number of

attributes possible. Single attribute primary keys are desirable but not required.

• Preferably numeric. Unique values can be better managed when they are numeric

because the database can use internal routines to implement a “counter style”

attribute that automatically increments values with the addition of each new row.

• Security complaint. The selected primary key must not be composed of any

attributes that might be considered a security risk or violation.

1.21.3 WHEN TO USE COMPOSITE PRIMARY KEYS

Composite primary keys are particularly useful in two cases:

• As identifiers of composite entities, where each primary key combination is allowed

only once in the many to many relationship

• As identifiers of weak entities, where the weak entity has a strong identifying

relationship with the parent entity.

1.21.4 WHEN TO USE SURROGATE PRIMARY KEYS

Surrogate primary keys are accepted practice in today’s complex data environments.

Surrogate primary keys are especially helpful when there is no natural key, when the

selected candidate key has embedded semantic contents, or when the selected candidate

key is too long or unmanageable. If you use a surrogate key, you must ensure that the

candidate key of the entity in question performs properly through the use of “unique

index” and “not null” constraints.

 http://wikistudent.ws/Unisa

1.22 DESIGN CASES: LEARNING FLEXIBLE DATABASE DESIGN

1.22.1 IMPLEMENTING ONE TO ONE RELATIONSHIPS

Foreign keys work with primary keys to properly implement relationships in the relation

model. With one to one relationships there are two options for selecting and placing the

foreign key. Either place a foreign key in both entities or place a foreign key in one of the

entities.

1.22.2 MAINTAINING HISTORY OF TIME VARIANT DATA

Time variant data refer to data whose values change over time and for which you must

keep history of the data changes. To model time variant data, you must create a new

entity in a one to many relationship with the original entity. The new entity will contain

the new value, the date of the change, and whatever other attribute is pertinent to the

event being modeled.

1.22.3 FAN TRAPS

A design trap occurs when a relationship is improperly or incompletely identified and,

therefore, is represented in a way that is not consistent with real world. The most

common design trap is a fan trap.

A fan trap occurs when you have one entity in two one to many relationships to other

entities, thus producing association amount the other entities that is not expressed in the

model.

1.22.4 REDUNDANT RELATIONSHIPS

Redundant relationships occur when there are multiple relationship paths between

related entities. The main concern with redundant relationships is that they remain

consistent across the model.

1.23 DATA MODELING CHECKLIST

BUSINESS RULES

• Properly document and verify all business rules with the end users.

• Ensure that all business rules are written precisely, clearly, and simply. The business

rules must help identify entities, attributes, relationships and constraints.

• Identify the source of all business rules and ensure that each business rule is

accompanied by the reason for its existence and by the date and person responsible

for the business rule verification and approval.

DATA MODELING

Naming Conventions

• Entity names:

� Should be nouns that are familiar to business and should be short and meaningful

� Should include abbreviations, synonyms, and aliases for each entity

 http://wikistudent.ws/Unisa

� Should be unique within the model

� For composite entities, may include combination of abbreviated names of the

entities linked through the composite entity.

• Attribute names:

� Should be unique within the entity

� Should use the entity abbreviation or prefix

� Should be descriptive of the characteristic

� Should use suffixes such as _ID for the primary key attribute

� Should not be a reserved word

� Should not contain spaces or special characters such as @,! or &

• Relationship names:

� Should be active or passive verbs that clearly indicate the nature of the

relationship

Entities

• All entities should represent a single subject

• All entities should be in third normal form or higher

• The granularity of the entity instance is clearly defined

• The primary key is clearly defined and supports the selected data granularity

Attributes

• Should be simple and single valued

• Should include default values, constraints, synonyms and aliases

• Derived attributes should be clearly identified and included source

• Should not be redundant unless they are required for transaction accuracy or for

maintaining a history or are used as a foreign key

Relationships

• Should clearly identify relationship participants

• Should clearly define participation and cardinality rules

Entity Relationship Diagram

• Should be validated against expected processes: inserts, updates, and deletes

 http://wikistudent.ws/Unisa

• Should evaluate where, when and how to maintain a history

• Should not contain redundant relationships except as required

• Should minimize data redundancy to ensure single place updates

CHAPTER 10 : TRANSACTION MANAGEMENT AND CONCURRENCY CONTROL

1.24 WHAT IS A TRANSACTION

In database terms, a transaction is any action that reads from and or writes to a database. A

transaction may consist of a simple SELECT statement to generate a list of table contents; It

may consist of a series of related UPDATE statements to change the values of attributes in

various tables; it may consist of a series of INSERT statements to add rows to one or more

tables; or it may consist of a combination of SELECT, UPDATE and INSERT statements.

A transaction is a logical unit of work that must be entirely and completed or entirely

aborted; no intermediate states are acceptable. A successful transaction changes the

database from one consistent state to another. A consistent database state is one in which

all data integrity constraints are satisfied.

Most real world database transactions are formed by two or more database requests. A

database request is the equivalent of a single SQL statement in an application program or

transaction. Therefore, if a transaction is composed of two UPDATE statements and one

INSERT statement, the transaction uses three database requests.

1.24.1 EVALUATING TRANSACTION RESULTS

Not all transactions update the database. SQL code represents a transaction because it

accesses the database. Improper or incomplete transaction can have a devastating effect

on database integrity. Some database management systems provide means by which the

user can define enforceable constraints based on business rules. Other integrity rules,

such as those governing referential and entity integrity, are enforced automatically by the

database management system.

1.24.2 TRANSACTION PROPERTIES

All transactions must display atomicity, consistency, isolation, durability, and

serializabitlity. These properties are sometimes referred to as the ACIDS test

• Atomicity requires that all operations of a transaction be completed, if not the

transaction is aborted.

• Consistency indicates the permanence of the database’s consistent state. When a

transaction is completed, the database reaches a consistent state.

• Isolation means that the data used during the execution of a transaction cannot be

used by a second transaction until the first one is completed.

• Durability ensures that once transaction changes are done, it cannot be undone or

lost, even in the event of a system failure.

 http://wikistudent.ws/Unisa

• Serializability ensures that the concurrent execution of several transaction yields

consistent results.

1.24.3 TRANSACTION MANAGEMENT WITH SQL

The American National Standards Institute has defined standards that govern SQL

database transactions. Transactions support is provided by two SQL statements: COMMIT

and ROLLBACK. The standard requires that when a transaction sequence is initiated by a

user or an application program, the sequence must continue through all succeeding SQL

statements until on of the following events occur:

• A COMMIT statement is reached and all changes are permanently recorded within the

database.

• A ROLLBACK statement is reached and all changes are aborted and the database is

rolled back to its previous consistent state.

• The end of a program is successfully reached and all changes are permanently

recorded within the database. It is equivalent to a COMMIT.

• The program is abnormally terminated and all changes are aborted and the database

is rolled back to its previous consistent state. It is equivalent to a ROLLBACK.

1.24.4 THE TRANSACTION LOG

A database management system uses a transaction log to keep track of all transaction that

update the database. The information stored in this log is used by the database

management system for a recovery requirement triggered by a ROLLBACK statement, a

programs abnormal termination, or a system failure.

The transaction log stores:

• A record for the beginning of the transaction

• For each transaction component or SQL statement

� The type of operation being performed, UPDATE, DELETE or INSERT

� The names of the objects or tables affected by the transaction

� The “before” and “after” values for the fields being updated

� Pointers to the previous and next transaction log entries for the same transaction

• The ending or COMMIT of the transaction

1.25 CONCURRENCY CONTROL

The coordination of the simultaneous execution of transaction in a multiuser database

system is known as concurrency control. The objective of concurrency control is to ensure

the serializability of transactions in a multiuser database environment. The simultaneous

execution of transactions over a shared database can create several data integrity and

consistency problems of which the main three are lost updates, uncommitted data and

inconsistent retrievals.

 http://wikistudent.ws/Unisa

1.25.1 THE SCHEDULER

The scheduler is a special database management system program that establishes the

order in which the operation within concurrent transactions are executed. The scheduler

interleaves the execution of database operations to ensure serializability and isolation of

transaction. The scheduler basis its action on concurrency control algorithms, such as

locking or time stamping methods. It makes sure that the computers central processing

unit is used efficiently and facilitates data isolation to ensure that two transactions do not

update the same data element at the same time.

1.26 CONCURRENCY CONTROL WITH LOCKING METHODS

A lock guarantees exclusive use of a data item to a current transaction. A transaction

acquires a lock prior to data access and the lock is released when the transaction is

completed. All lock information is managed by a lock manager, which is responsible for

assigning and policing the locks used by the transactions.

1.26.1 LOCK GRANULARITY

Lock granularity indicates the level of lock use. Locking can take place at the following

levels:

• Database Level. In a database level lock the entire database is locked, thus

preventing the use of any tables in the database by a transaction.

• Table Level. In a table level lock the entire table is locked, preventing access to any

row by a transaction.

• Page Level. In a page level lock the database management system will lock an entire

diskpage.

• Row Level. A row level lock allows concurrent transactions to access different rows

of the same table even when the rows are located on the same page.

• Field Level. The field level lock allows concurrent transaction to access the same row

as long as they require the use of a different field or attribute within that row.

1.26.2 LOCK TYPES

Regardless of the level of locking different lock types can be used:

• Binary Locks. A binary lock has only two states locked (1) or unlocked (0)

• Exclusive Locks. An exclusive lock exists when access is reserved specifically for the

transaction that locked the object.

• Shared Lock. A shared lock exists when concurrent transactions are granted read

access on the basis of a common lock.

1.26.3 TWO PHASE LOCKING TO ENSURE SERIALIZABILITY

Two phase locking defines how transactions acquire and relinquish locks. Two phase

locking guarantees serializability but does not prevent deadlocks. The two phases are:

 http://wikistudent.ws/Unisa

• A growing phase, in which a transaction acquires all required locks without unlocking

any data. Once all locks have been acquired, the transaction is in its locked point.

• A shrinking phase, in which the transaction releases all locks and cannot obtain any

new locks.

The two phase locking protocol is governed by the following rules:

• Two transaction cannot have conflicting locks

• No unlock operation can precede a lock operation in the same transaction

• No data are affected until all locks are obtained, that is, until the transaction is in its

locked point.

1.26.4 DEADLOCKS

A database deadlock is caused when two transactions wait for each other to unlock data.

Deadlocks are possible only when one of the transactions wants to obtain an exclusive

lock on a data item, no deadlocks can exist among shared locks.

The three basic techniques to control deadlocks are:

• Prevention. A transaction requesting a new lock is aborted when there is the

possibility that a deadlock can occur.

• Detection. The database management system periodically tests the database for

deadlocks.

• Avoidance. The transaction must obtain all of the locks it needs before it can be

executed.

1.27 CONCURRENCY CONTROL WITH TIME STAMPING METHODS

The time stamping approach to scheduling concurrent transactions assigns a global, unique

time stamp to each transaction. The time stamp value produces an explicit order in which

transactions are submitted to the database management system. Time stamps must have

two properties. Uniqueness to ensure that no equal time stamp values can exist and

Monotonicity to ensure that time stamp values always increase.

1.27.1 WAIT DIE AND WOUND WAIT SCHEMES

In a wait die scheme the older transaction waits and the younger is rolled back and

rescheduled. In a wound wait scheme the older transaction rolls back the younger

transaction and reschedules it.

1.28 CONCURRENCY CONTROL WITH OPTIMISTIC METHODS

The optimistic method is based on the assumption that the majority of the database

operations do not conflict. The optimistic approach does not require locking or time

stamping techniques. Instead, a transaction is executed without restrictions until it is

 http://wikistudent.ws/Unisa

committed. Using the optimistic approach each transaction moves through two or three

phases:

• Read phase. The transaction reads the database, executes the needed computations

and makes the updates to a private copy of the database values. All update

operations of the transaction are recorded in a temporary update file, which is not

accessed by the remaining transactions.

• Validation phase. The transaction is validated to ensure that the changes made will

not affect the integrity and consistency of the database.

• Write phase. The changes are permanently applied to the database.

1.29 DATABASE RECOVERY MANAGEMENT

Database recovery restores a database from a given state, usually inconsistent, to a

previously consistent state. Recovery techniques are based on the atomic transaction

property, all portions of transaction must be treated as single logical unit of work, so all

operations must be applied and completed to produce consistent database. If a transaction

operation cannot be completed, the transaction must be aborted, and any changes to

database must be rolled back.

1.29.1 TRANSACTION RECOVERY

Four important concepts that affect the recovery process:

• Write-ahead-log protocol. This protocol ensures that transaction logs are always

written before any database data are actually updated.

• Redundant transaction logs. Most database management systems keep several

copies of the transaction log to ensure that a physical disk failure will not impair the

database management systems ability to recover data.

• Buffers. A buffer is a temporary storage area in primary memory used to speed up

disk operations.

• Checkpoints. A database checkpoint is an operation in which the database

management system writes all of its updated buffers to disk.

When the recovery procedures uses deferred write or deferred update, the transaction

operations do not immediately update the physical database. The database is physically

updated only after the transaction reaches its commit point, using the transaction log

information.

When the recovery procedure uses write-through or immediate update the database is

immediately updated by transaction operations during the transactions execution, even

before the transaction reaches its commit point.

CHAPTER 12 : DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

 http://wikistudent.ws/Unisa

1.30 THE EVOLUTION OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A distributed database management system governs the storage and processing of logically

related data over interconnected computer systems in which both data and processing

functions are distributed among sever sites.

The dynamic business environment and the centralized database’s shortcomings spawned a

demand for applications based on accessing data from different sources at multiple

locations. These database environments are then managed by distributed database

management systems.

1.31 ADVANTAGES AND DISADVANTAGES

Advantages of a distributed database management system:

• Data are located near the greatest demand site.

• Faster data access.

• Faster data processing speed.

• Growth facilitation.

• Improved communications.

• Reduced operating costs.

• User-friendly interface.

• Less danger of a single-point failure.

• Processor independence.

Disadvantages of a distributed database management system:

• Complexity of management and control.

• Security.

• Lack of standards.

• Increased storage requirements.

• Increased training cost.

1.32 DISTRIBUTED PROCESSING AND DISTRIBUTED DATABASES

In distributed processing a databases logical processing is shared among two or more

physically independent sites that are connected through a network.

A distributed database stores a logically related database over two or more physically

independent sites. The sites are connected via a computer network.

1.33 CHARACTERISTICS OF DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

A distributed database management system must at least have the following functions:

 http://wikistudent.ws/Unisa

• Application interface to interact with the end user or application programs and with

other database management systems within the distributed database.

• Validation to analyze data requests.

• Transformation to determine which data request components are distributed and

which are local.

• Query optimization to find the best access strategy.

• Mapping to determine the data location of local and remote fragments

• Input output interface to read or write data from or to permanent local storage.

• Formatting to prepare the data for presentation to the end user or to an application

program.

• Security to provide data privacy at both local and remote databases.

• Backup and recovery to ensure the availability and recoverability of the database in

case of failure.

• Database administration features for the database administrator.

• Concurrency control to manage simultaneous data access and to ensure data

consistency across database fragments in the distributed database management

system.

• Transaction management to ensure that the data mover from one consistent state to

another. This activity includes the synchronization of local and remote transactions

as well as transactions across multiple distributed segments.

A distributed database management system must perform all of the functions of a

centralized database management system. In addition it must handle all necessary

function imposed by the distribution of data and processing. And perform those

additional functions transparently to the end user.

1.34 DISTRIBUTED DATABASE MANAGEMENT SYSTEM COMPONENTS

A distributed database management system must include at least the following

components:

• Computer workstations that form the network system. The distributed database

system must be independent of the computer system hardware.

• Network hardware and software components that reside in each workstation. The

network components allow all sites to interact and exchange data.

• Communications media that carry the data from one workstation to another. The

distributed database management system must be communications media

independent.

 http://wikistudent.ws/Unisa

• The transaction processor, which is the software component found in each computer

that requests data. The transaction processor receives and processes the applications

data request. Also known as the application processor or the transaction manager.

• The data processor which is the software component residing in each computer that

stores and retrieves data located at the site. Also known as the data manager.

1.35 LEVELS OF DATA AND PROCESS DISTRIBUTION

1.35.1 SINGLE-SITE PROCESSING, SINGLE-SITE DATA

In the single- site processing, single-site data scenario, all processing is done on a single

CPU or host computer and all data are stored on the host computers local disk. Processing

cannot be done on the end users side of the system. This scenario is typical of most

mainframe and midrange computer database management systems. The database is

located on a host computer which is accessed by dumb terminals connected to it. The

scenario is also typical of the first generation single-user microcomputer databases.

1.35.2 MULTIPLE-SITE PROCESSING, SINGE-SITE DATA

Under the multiple-site processing, single-site data scenario, multiple processes run on

different computers sharing a single data repository. This scenario requires a network file

server running conventional applications that are accessed through a LAN.

1.35.3 MULTIPLE-SITE PROCESSING, MULTIPLE-SITE DATA

The multiple-site processing, multiple-site data scenario describes a fully distributed

database management system with support for multiple data processors and transactions

processors at multiple sites.

Distributed Database management systems are classified as either:

• Homogeneous. Which integrates only one type of centralized database management

system over a network.

• Heterogeneous. Which integrates different types of centralized database

management systems over a network.

• Fully heterogeneous. Which supports different database management systems that

may even support different data models running under different computer systems.

1.36 DISTRIBUTED DATABASE TRANSPARENCY FEATURES

Transparency features have the common property of allowing the end user to feel like the

databases only user.

Transparency features include:

• Distribution transparency, which allows a distributed database to be treated as a

single logical database.

• Transaction transparency, which allows a transaction to update data at several

network sites.

 http://wikistudent.ws/Unisa

• Failure integrity, which ensures that the system will continue to operate in the event

of a node failure.

• Performance transparency, which allows the system to perform as if it were a

centralized database management system.

• Heterogeneity transparency, which allows the integration of several different local

database management systems under a common or global schema.

1.37 DISTRIBUTION TRANSPARENCY

Allows a physically dispersed database to be managed as though it were a centralized

database.

Three levels o distribution transparency are recognized:

• Fragmentation transparency is the highest level of transparency. The end user or

programmer does not need to know that the database is partitioned. Neither

fragment names, nor locations are specified.

• Location transparency exists when the end user or programmer must specify the

database fragment names but does not need to specify where those fragments are

located.

• Local mapping transparency exists when the end user or programmer must specify

both the fragment names and their locations.

1.38 TRANSACTION TRANSPARENCY

Is a distributed database management system property that ensures that the database

transactions will maintain the distributed databases integrity and consistency.

1.38.1 DISTRIBUTED REQUESTS AND DISTRIBUTED TRANSACTIONS

The basic difference between a nondistributed transactions and distributed transactions

is that the latter can update or request data from several different remote sites on a

network.

A remote request lets a single SQL statement access the data that is to be processed by a

single remote database processor.

A remote transaction composed of several requests, accesses data at a single remote site.

A distributed transaction allows a transaction to reference several different local or

remote database processor sites.

A distributed request lets a single SQL statement reference data located at several different

local or remote database processor sites.

1.38.2 DISTRIBUTED CONCURRENCY CONTROL

Concurrency control becomes especially important in the distributed database

environment because multisite, multiple-process operations are more likely to create data

inconsistencies and deadlocked transactions than single-site systems are.

 http://wikistudent.ws/Unisa

1.38.3 TWO-PHASE COMMIT PROTOCOL

Distributed databases make it possible for a transaction to access data at sever sites. A

final COMMIT must not be issued until all sites have committed their parts of the

transaction.

The two-phase commit protocol requires that the transaction entry log for each database

processor be written before the database fragment is actually updated.

1.39 PERFORMANCE TRANSPARENCY AND QUERY OPTIMIZATION

The objective of a query optimization routine is to minimize the total cost associated with

the execution of a request.

The costs associated with a request are a function of the:

• Access time cost involved in accessing the physical data stored on disk

• Communication cost associated with the transmission of data among nodes in

distributed database systems.

• CPU time cost associated with the processing overhead of managing distributed

transactions.

Query optimization must provide distribution transparency as well as replica

transparency. Replica transparency refers to the distributed database management

systems ability to hide the existence of multiple copies of data from the user.

Most of the algorithms proposed for query optimization are based on two principles:

• The selection of the optimum execution order

• The selection of sites to be accessed to minimize communication costs

Within those two principles, a query optimization algorithm can be evaluated on the basis

of its operation mode or the timing of its optimizations.

Operation modes can be classified as manual or automatic. Automatic query optimization

means that the distributed database management system finds the most cost-effective

access path without user intervention. Manual query optimization requires that the

optimization be selected and scheduled by the end user or programmer.

Within the timing classification, query optimization can be static or dynamic. Static query

optimization takes place at compilation time. Dynamic query optimization takes place at

execution time.

Query optimization techniques can be classified according to the type of information that

is used to optimize the query, it can be either statistically based or rule-based.

Statistically based query optimization algorithm uses statistical information about the

database to determine the best access strategy. Rule-based query optimization algorithm

is based on a set of user-defined rules to determine the best query access strategy.

1.40 DISTRIBUTED DATABASE DESIGN

 http://wikistudent.ws/Unisa

1.40.1 DATA FRAGMENTATION

Data fragmentation allows you to break a single object into two or more segments or

fragments. Each fragment can be stored at any site over a computer network.

Information about the fragmentation is stored in the distributed data catalog, from which

it is accessed by the transaction processor to process user requests.

Data fragmentation strategies are based at the table level and consist of dividing a table

into logical fragments. Three types of such data fragmentation are:

• Horizontal fragmentation refers to the division of a relation into subsets of rows.

• Vertical fragmentation refers to the division of a relation into attribute subsets.

• Mixed fragmentation refers to a combination of horizontal and vertical strategies.

1.40.2 DATA REPLICATION

Data replication refers to the storage of data copies at multiple sites served by a computer

network. Fragment copies can be stored at several sites to serve specific information

requirements. Because the existence of fragmentation copies can enhance data

availability and response time, data copies can help to reduce communication and total

query costs.

Replicated data are subject to the mutual consistency rule. The mutual consistency rule

requires that all copies of data fragments be identical.

Three replication scenarios exist:

• A fully replicated database stores multiple copies of each database fragment at

multiple sites. It can be impractical due to the amount of overhead it imposes.

• A partially replicated database stores multiple copies of some database fragments

at multiple sites. It is handled well by most databases.

• An unreplicated database stores each database fragment at a single site.

1.40.3 DATA ALLOCATION

Data allocation describes the process of deciding where to locate data.

Data allocation strategies are as follows:

• With centralized data allocation, the entire database is stored at one site

• With partitioned data allocation, the database is divided into several disjointed

parts and stored at several sites.

• With replicated allocation, copies of one or more database fragments are stored at

several sites.

Data distribution over a computer network is achieved through data partition, through

data replication, or through a combination of both.

 http://wikistudent.ws/Unisa

1.41 CLIENT SERVER VERSUS DISTRIBUTED DATABASE MANAGEMENT SYSTEM

Client server architecture refers to the way in which computers interact to form a system.

It features users of resources, or a client, and a provider of resources, or a server. It can be

used to implement the database management system in which the client is the transaction

processor and the server is the database processor.

Client server application advantages:

• Client server solutions tend to be less expensive than alternate minicomputer or

mainframe solutions

• Client server solutions allow the end user to use the microcomputers interface

thereby improving functionality and simplicity

• More people in the job market have computer skills than mainframe skills

• The computer is well established in the workplace

• Numerous data analysis and query tools exist to facilitate interaction with many of

the database management systems that are available in the computer market

• There is a considerable cost advantage to offloading applications development from

the mainframe to powerful computers.

Client server application disadvantages:

• The client server architecture creates a more complex environment in which different

platforms are often difficult to manage.

• An increase in the number of users and processing sites often paves the way for

security problems.

• The client server environment makes it possible to spread data access to a much

wider circle of users, which increases the demand for people with a broad knowledge

of computers and software applications and the burden of training.

1.42 C.J DATES TWELVE COMMANDMENTS FOR DISTRIBUTED DATABASES

1) Local site independence

2) Central site independence

3) Failure independence

4) Location transparency

5) Fragmentation transparency

6) Replication transparency

7) Distributed query processing

8) Distributed transaction processing

 http://wikistudent.ws/Unisa

9) Hardware independence

10) Operating system independence

11) Network independence

12) Database independence

CHAPTER 14 : DATABASE CONNECTIVITY AND WEB DEVELOPMENT

1.43 DATABASE CONNECTIVITY

Database connectivity refers to the mechanisms through which application programs

connect and communicate with data repositories. Database connectivity software is also

knows as database middleware because it interfaces between the application program and

the database. The data repository, also known as the data source, represents the data

management application that will be used to store the data generated by the application

program.

1.43.1 NATIVE SQL CONNECTIVITY

Native SQL connectivity refers to the connection interface that is provided by the database

vendor and is unique to that vendor. The best example of that type of native interface is

the Oracle RDBMS. To connect a client application to an Oracle database, you must install

and configure the Oracle’s SQL Net interface in the client computer.

1.43.2 OPEN DATABASE CONNECTIVITY AND DATA OR REMOTE ACCESS OBJECTS

Open Database Connectivity is Microsoft’s implementation of a superset of the SQL Access

Group Call Level Interface standard for database access. Open Database Connectivity is

probably the most widely supported database connectivity interface. It allows any

Windows application to access relational data sources, using SQL via a standard

application programming interface.

Data Access Objects is an object-oriented application programming interface used to

access MS Access, MS FoxPro and dBase databases from Visual Basic programs. It

provided an optimized interface that exposed the functionality of the Jet data engine to

programmers. The interface can also be used to access other relation style data sources.

Remote Data Objects is a higher-level object-oriented application interface used to access

remote database servers. It uses the lower-level database access object and open database

connectivity for direct access to databases. The interface was optimized to deal with

server based databases, such as MS SQL Server and Oracle.

The basis open database connectivity architecture has three main components:

• A high-level open database connectivity application programming interface through

which application programs access open database connectivity functionality.

• A driver manager that is in charge of managing all database connections.

 http://wikistudent.ws/Unisa

• An open database connectivity driver that communicates directly to the database

management system.

1.43.3 OBJECT LINKING AND EMBEDDING FOR DATABASE

Object Linking and Embedding for Database is middleware that adds object-oriented

functionality for access to relational and nonrelational data. It is composed of series of

component objects models that provide low-level database connectivity for applications.

The Object Linking and Embedding for Database model is better understood when you

divide its functionality into following types of objects:

• Consumers are objects that request and use data.

• Providers are objects that manage the connection with a data source an provide data

to the consumers.

Object Linking and Embedding for Database did not provide support for scripting

languages.

1.43.4 ADO.NET

ADO.NET is data access component of Microsoft’s .NET application development

framework. It introduced two new features critical for development of distributed

applications, DataSets and XML support. A DataSet is disconnected memory-resident

representation of database. DataSet is internally stored in XML format and data in

DataSet can be made persistent as XML documents.

ADO.NET comes with two standard data providers:

• Data provider for OLE-DB data sources.

• Data Provider for SQL Server.

No matter data provider, it must support set of specific objects in order to manipulate

data in data source :

• Connection

• Command

• DataReader

• DataAdapter

• DataSet

• DataTable

1.44 INTERNET DATABASES

Web database connectivity allows new innovative services that:

• Permit rapid response to competitive pressures by bringing new services and

products to market quickly

 http://wikistudent.ws/Unisa

• Increase customer satisfaction through creation of Web-based support services

• Yield fast and effective information dissemination through universal access from

across street or across globe

1.44.1 WEB-TO-DATABASE MIDDLEWARE: SERVER-SIDE EXTENSIONS

Also known as Web-to-database middleware. It is a program that interacts directly with

Web server to handle specific types of requests. It provides its services to Web server in a

way that is totally transparent to client browser.

1.44.2 WEB SERVER INTERFACES

Two well-defined Web server interfaces:

• Common Gateway Interface (CGI)

• Application programming interface (API)

1.44.3 THE WEB BROWSER

Web browser is software that lets users navigate or browse the Web. It is located in a

client computer and the end-user uses it to interface to World Wide Web. It interprets

HTML code received from Web server and presents different page components in a

standard way.

1.44.4 CLIENT-SIDE EXTENSIONS

Client side extensions adds functionality to Web browser.

Although client side extensions are available in various fomrs, the most commonly

encountered extentions are:

• Plug-ins

• Java and JavaScript

• ActiveX and VBScript

1.45 USING A WEB-TO-DATABASE PRODUCTION TOOL : COLDFUSION

A Web application server is a middleware application that expands Web server

functionality by linking it to wide range of services. It provides a consistent run-time

environment for Web applications.

ColdFusion application middleware can be used to:

• Connect to and query database from Web page

• Present database data in Web page, using various formats

• Create dynamic Web search pages

• Create Web pages to insert, update, and delete database data

• Define required and optional relationships

 http://wikistudent.ws/Unisa

• Define required and optional form fields

• Enforce referential integrity in form fields

• Use simple and nested queries and form select fields to represent business rules

1.45.1 THE WEB AS A STATELESS SYSTEM

Stateless system indicates that at any given time, Web server does not know status of any

of clients communicating with it. Client and server computers interact in very short

“conversations” that follow request-reply model.

