Database Principles: Fundamentals of Design, Implementation, and Management Tenth Edition

Chapter 4 Relational Model Characteristics

Objectives

In this chapter, students will learn:

- That the relational database model offers a logical view of data
- About the relational model's basic component: relations
- That relations are logical constructs composed of rows (tuples) and columns (attributes)
- That relations are implemented as tables in a relational DBMS

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Objectives (cont'd.)

- About relational database operators, the data dictionary, and the system catalog
- How data redundancy is handled in the relational database model
- Why indexing is important

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

A Logical View of Data

- Relational model
 - View data logically rather than physically
- Table
 - Structural and data independence
 - Resembles a file conceptually
- Relational database model is easier to understand than hierarchical and network models

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Tables and Their Characteristics

- Logical view of relational database is based on relation
 - Relation thought of as a table
- Table: two-dimensional structure composed of rows and columns
 - Persistent representation of logical relation
- Contains group of related entities (entity set)

TABLE 4.1	Characteristics of a Relational Table
1	A table is perceived as a two-dimensional structure composed of rows and columns.
2	Each table row (tuple) represents a single entity occurrence within the entity set.
3	Each table column represents an attribute, and each column has a distinct name.
4	Each intersection of a row and column represents a single data value.
5	All values in a column must conform to the same data format.
6	Each column has a specific range of values known as the attribute domain.
7	The order of the rows and columns is immaterial to the DBMS.
8	Each table must have an attribute or combination of attributes that uniquely identifies each row.

FIGURE STUDENT table attribute values 4.1

Table name: STUDENT

Database name: Ch04_TinyCollege

STU_NUM	STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_CLASS	STU_GPA	STU_TRANSFER	DEPT_CODE	STU_PHONE	PROF_NUM
321452	Bowser	William	C	12-Feb-1975	42	So	2.84	Na	BIOL	2134	205
324257	Smithson	Anne	K	15-Nov-1981	81	Jr	3.27	Yes	CIS	2256	222
324258	Brewer	Juliette		23-Aug-1969	36	So	2.26	Yes	ACCT	2256	228
324269	Oblonski	Wolter	Н	16-Sep-1976	66	Jr	3.09	Na	CIS	2114	222
324273	Smith	John	D	30-Dec-1958	102	Sr	2.11	Yes	ENGL	2231	199
324274	Katinga	Raphael	P	21-Oct-1979	11.4	Sr	3.15	Na	ACCT	2267	228
324291	Robertson	Gerald	Т	08-Apr-1973	120	Sr	3.87	Na	EDU	2267	311
324299	Smith	John	В	30-Nov-1986	15	Fr	2.92	Na	ACCT	2315	230

STU_NUM	= Student number
STU_LNAME	= Student last name
STU_FNAME	= Student first name
STU_INIT	= Student middle initial
STU_DOB	= Student date of birth
STU_HRS	= Credit hours earned
STU_CLASS	= Student classification
STU_GPA	= Grade point average
STU_TRANSFER	= Student transferred from another institution
DEPT_CODE	= Department code
STU_PHONE	= 4-digit campus phone extension
PROF_NUM	= Number of the professor who is the student's advisor
	SOURCE: Course Technology/Cengage Learning

Keys

- Each row in a table must be uniquely identifiable
- Key: one or more attributes that determine other attributes
 - Key's role is based on determination
 - If you know the value of attribute A, you can determine the value of attribute B
 - Functional dependence
 - Attribute B is functionally dependent on A if all rows in table that agree in value for A also agree in value for B

8

TABLEStudent Class4.2	ssification
HOURS COMPLETED	CLASSIFICATION
Less than 30	Fr
30–59	So
60–89	Jr
90 or more	Sr

Types of Keys

- Composite key
 - Composed of more than one attribute
- Key attribute
 - Any attribute that is part of a key
- Superkey
 - Any key that uniquely identifies each row
- Candidate key

- A superkey without unnecessary attributes

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

- Entity integrity
 - Each row (entity instance) in the table has its own unique identity
- Nulls
 - No data entry
 - Not permitted in primary key
 - Should be avoided in other attributes

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

- Can represent:
 - An unknown attribute value
 - A known, but missing, attribute value
 - A "not applicable" condition
- Can create problems when functions such as COUNT, AVERAGE, and SUM are used
- Can create logical problems when relational tables are linked

- Controlled redundancy
 - Makes the relational database work
 - Tables within the database share common attributes
 - Enables tables to be linked together
 - Multiple occurrences of values not redundant when required to make the relationship work
 - Redundancy exists only when there is unnecessary duplication of attribute values

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

FIGURE 4.2

An example of a simple relational database

Table name: PRODUCT Primary key: PROD_CODE Foreign key: VEND_CODE

Database name: Ch04_SaleCo

PROD_CODE	PROD_DESCRIPT	PROD_PRICE	PROD_ON_HAND	VEND_CODE
001278-AB	Claw hammer	12.95	23	232
123-21UUY	Houselite chain savv, 16-in. bar	189.99	4	235
QER-34256	Sledge hammer, 16-lb. head	18.63	6	231
SRE-657UG	Rat-tail file	2.99	15	232
ZZX/3245Q	Steel tape, 12-ft. length	6.79	8	235

link

	VEND_CODE	VEND_CONTACT	VEND_AREACODE	VEND_PHONE
Table name: VENDOR	230	Shelly K. Smithson	608	555-1234
Primary key: VEND_CODE	231	James Johnson	615	123-4536
Foreign key: none	232	Annelise Crystall	608	224-2134
<i>.</i> ,	233	Candice Wallace	904	342-6567
	234	Arthur Jones	615	123-3324
	235	Henry Ortozo	615	899-3425

SOURCE: Course Technology/Cengage Learning

- Foreign key (FK)
 - An attribute whose values match primary key values in the related table
- Referential integrity
 - FK contains a value that refers to an existing valid tuple (row) in another relation
- Secondary key
 - Key used strictly for data retrieval purposes

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

T A		
	ю	-

4.3

Relational Database Keys

KEY TYPE	DEFINITION
Superkey	An attribute or combination of attributes that uniquely identifies each row in a table
Candidate key	A minimal (irreducible) superkey; a superkey that does not contain a subset of attributes that is itself a superkey
Primary key	A candidate key selected to uniquely identify all other attribute values in any given row; cannot contain null entries
Foreign key	An attribute or combination of attributes in one table whose values must either match the primary key in another table or be null
Secondary key	An attribute or combination of attributes used strictly for data retrieval purposes

Integrity Rules

- Many RDBMs enforce integrity rules
 automatically
- Safer to ensure that application design conforms to entity and referential integrity rules
- Designers use flags to avoid nulls
 - Flags indicate absence of some value

TABLE 4.4

Integrity Rules

ENTITY INTEGRITY	DESCRIPTION			
Requirement	All primary key entries are unique, and no part of a primary key may be null.			
Purpose	Each row will have a unique identity, and foreign key values can properly reference primary key values.			
Example	No invoice can have a duplicate number, nor can it be null. In short, all invoices are uniquely identified by their invoice number.			
REFERENTIAL INTEGRITY	DESCRIPTION			
Requirement	A foreign key may have either a null entry, as long as it is not a part of its table's primary key, or an entry that matches the primary key value in a table to which it is related. (Every non-null foreign key value <i>must</i> reference an <i>existing</i> primary key value.)			
Purpose	It is possible for an attribute <i>not</i> to have a corresponding value, but it will be impos- sible to have an invalid entry. The enforcement of the referential integrity rule makes it impossible to delete a row in one table whose primary key has mandatory match- ing foreign key values in another table.			
Example	A customer might not yet have an assigned sales representative (number), but it will be impossible to have an invalid sales representative (number).			

TABLE A Du	mmy Variable Value Us	ed as a Flag		
AGENT_CODE	AGENT_AREACODE	AGENT_PHONE	AGENT_LNAME	AGENT_YTD_SLS
-99	000	000-0000	None	\$0.00

An illustration of integrity rules

Table name: CUSTOMER Primary key: CUS_CODE Foreign key: AGENT_CODE

Database name: Ch04 InsureCo

CUS_CODE CUS_LNAME CUS_FNAME CUS_INITIAL CUS_RENEW_DATE AGENT_CODE 10010 Ramas Alfred C5-Apr-2012 A. 502 10011 Dunne Κ 16-Jun-2012 Leona 501 10012 Smith Kathy W 29-Jan-2013 502 10013 Olowski F Paul 14-Oct-2012 Myron 28-Dec-2012 501 10014 Orlando В 22-Sep-2012 10015 O'Brian Amy. 503 G 10016 Brown James. 25-Mar-2013 502 10017 Williams George 17-Jul-2012 503 G 03-Dec-2012 501 10018 Farriss Anne. Κ 14-Mar-2013 10019 Smith 503 Olette

Table name: AGENT (only five selected fields are shown) Primary key: AGENT_CODE

Foreign key: none

AGENT_CODE	AGENT_AREACODE	AGENT_PHONE	AGENT_LNAME	AGENT_YTD_SLS
501	713	228-1249	Alby	132735.75
502	615	882-1244	Hahn	138967.35
503	615	123-5589	Okon	127093.45

SOURCE: Course Technology/Cengage Learning

Relational Set Operators

- Relational algebra
 - Defines theoretical way of manipulating table contents using relational operators
 - Use of relational algebra operators on existing relations produces new relations:
 - SELECT
 - PROJECT
 - JOIN
 - INTERSECT

- UNION
- DIFFERENCE

20

- PRODUCT
- DIVIDE

URE S	ELECT			
Origina	l table			New table
P CODE		PRICE		P_CODE P_DESCRIPT PRICE
123456	Flashlight	5.26	SELECT ALL violds	123456 Flashlight 5.26
123457	Lamp	25.15	SELECT ALL yields	123457 Lamp 25.15
123458	Box Fan	10.99		123458 Box Fan 10.99
213345	9v battery	1.92		213345 9v battery 1.92
254467	100W bulb	1.47		254467 100VV bulb 1.47
311452	Powerdrill	34.99		311452 Powerdrill 34.99
SELECT	only PRICE le	ess than \$2	2.00 yields	P_CODE P_DESCRIPT PRICE 213345 9v battery 1.92 254467 100W bulb 1.47
SELECT	only P_COD	E = 31145	2 yields	P_CODE P_DESCRIPT PRICE 311452 Powerdrill 34.99

FIGURE 4.5	PROJECT			
	P_CODE P_DESCRIPT PRICE 123456 Flashlight 5.26 123457 Lamp 25.15 123458 Box Fan 10.99 213345 9v battery 1.92 254467 100VV bulb 1.47 311452 Powerdrill 34.99	DJECT PRICE yields	New table PRICE 5.26 25.15 10.99 1.92 1.47 34.99	
	PROJECT P_DESCRIPT and PRICE y	ields	P_DESCRIPT Flashlight Lamp Box Fan 9v battery 100W bulb Powerdrill	PRICE 5.26 25.15 10.99 1.92 1.47 34.99
	PROJECT P_CODE and PRICE yield	s	P_CODE PI 123456 123457 123458 213345	RICE 5.26 25.15 10.99
			254467 311452	1.92 1.47 34.99 ourse Technology

urse Technology/Cengage Learning

22

GURE .6	UNIC	ON									
P_CODE	P_DESCRIPT	PRICE	UNION	P CODE	P DESCRIPT	PRICE	vields	P_CODE	P_DESCRIPT	PRICE	
123455	Flashlight	5.26		345678	Microwave	160.00		123456	Flashlight	5.26	
123457	Lamp	25.15		345679	Dishwasher	500.00		123457	Lomp	25.15	
23458	Box Fan	10.99		123458	Box Fan	10.99	-	123458	Box Fan	10.99	
	9v battery	1.92		120100	Doxinan	10.00		213345	9v battery	1.92	
254467	100VV bulb	1.47						254467	100VV bulb	1.47	
	Powerdrill	34.99						311452	Powerdrill	34,99	
JT1402	FOMBIGHI	34.33						345678	Microvrove	160	
								345679	Dishvvasher	500	
								SOURC	E: Course Tech	inology/Ce	ingage

FIGURE	INTERSECT
4.7	

STU_FNAME	STU_LNAME	INTERSECT	EMP_FNAME	EMP_LNAME	yields 🔪	STU_FNAME	STU_LNAME
George	Jones		Franklin	Lopez		Franklin	Johnson
Jane	Smith		William	Turner			
Peter	Robinson		Franklin	Johnson			
Franklin	Johnson		Susan	Rogers			
Martin	Lopez						

SOURCE: Course Technology/Cengage Learning

FIGURE 4.8

STU_FNAME	STU_LNAME	DIFFERENCE
George	Jones	
Jane	Smith	
Peter	Robinson	
Franklin	Johnson	
Martin	Lopez	

E	EMP_FNAME	EMP_LNAME	yields
	Franklin	Lopez	
	William	Turner	
	Franklin	Johnson	
	Susan	Rogers	

STU_FNAME	STU_LNAME
George	Jones
Jane	Smith
Peter	Robinson
Martin	Lopez

SOURCE: Course Technology/Cengage Learning

FIGURE 4.9

PRODUCT

DIFFERENCE

P_CODE	P_DESCRIPT	PRICE
123465	Flashlight	5.26
123457	Lamp	25.15
123458	Box Fan	10.99
213345	9γ battery	1.92
254467	100W bulb	1.47
311452	Powerdrill	34.99

PRODUCT

STORE	AISLE	SHELF
23	W	6
24	ĸ	9
25	Z	6

yie	ds	

P_CODE	P_DESCRIPT	PRICE	STORE	AISLE	SHELF
123456	Flashlight	5.26	23	W	5
123456	Flashlight	5.28	24	ĸ	9
123456	Flashlight	5.28	25	Z	6
123467	Lamp	25.15	23	W	5
123457	Lamp	25.15	24	K	9
123457	Lamp	25.15	25	Z	6
12345B	Box Fan	10.99	23	W	5
12346B	Box Fan	10.99	24	K	9
123458	Box Fan	10.99	25	Z	6
213345	9x battery	1.92	23	W	5
213345	9v battery	1.92	24	ĸ	9
213345	9v battery	1.92	26	Z	Б
311452	Powerdrill	34.99	23	W	5
311452	Powerdrill	34.99	24	K	9
311452	Powerdrill	34,99	25	Z	6
254467	100W bulb	1.47	23	W	6
254467	100W bulb	1.47	24	K	9
254467	100W bulb	1.47	25	Ζ	6

SOURCE: Course Technology/Cengage Learning

∠+

Relational Set Operators (cont'd.)

- Natural join
 - Links tables by selecting rows with common values in common attributes (join columns)
- Equijoin
 - Links tables on the basis of an equality condition that compares specified columns
- Theta join
 - Any other comparison operator is used

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Relational Set Operators (cont'd.)

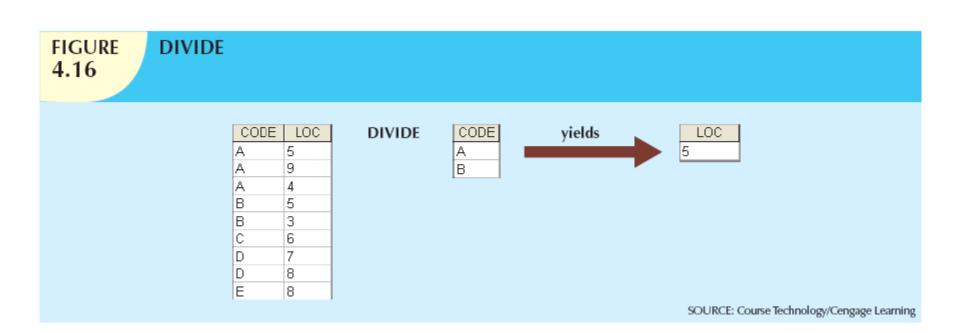
- Inner join
 - Only returns matched records from the tables that are being joined
- Outer join
 - Matched pairs are retained, and any unmatched values in other table are left null

FIGURE 4.10

Two tables that will be used in join illustrations

Table name: CUSTOMER

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE
1132445	Walker	32145	231
1217782	Adares	32145	125
1312243	Rakowski	34129	167
1321242	Rodriguez	37134	125
1542311	Smithson	37134	421
1657399	Vanloo	32145	231


Table name: AGENT

AGENT_CODE	AGENT_PHONE
125	6152439887
167	6153426778
231	6152431124
333	9041234445

SOURCE: Course Technology/Cengage Learning

Relational Set Operators (cont'd.)

- Left outer join
 - Yields all of the rows in the CUSTOMER table
 - Including those that do not have a matching value in the AGENT table
- Right outer join
 - Yields all of the rows in the AGENT table
 - Including those that do not have matching values in the CUSTOMER table

The Data Dictionary and System Catalog

- Data dictionary
 - Provides detailed accounting of all tables found within the user/designer-created database
 - Contains (at least) all the attribute names and characteristics for each table in the system
 - Contains metadata: data about data
- System catalog
 - Contains metadata
 - Detailed system data dictionary that describes all objects within the database

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

TABLE 4.6

A Sample Data Dictionary

TABLE NAME	ATTRIBUTE NAME	CONTENTS	TYPE	FORMAT	RANGE	REQUIRED	PK or FK	FK REFERENCED TABLE
CUSTOMER	CUS_CODE CUS_LNAME CUS_FNAME CUS_INITIAL CUS_RENEW_DATE AGENT_CODE	Customer account code Customer last name Customer first name Customer initial Customer insurance renewal date Agent code	CHAR(5) VARCHAR(20) VARCHAR(20) CHAR(1) DATE CHAR(3)	99999 Xxxxxx Xxxxxxx X dd-mmm-yyyy 999	10000-99999	Y Y Y	PK FK	AGENT_CODE
AGENT	AGENT_CODE AGENT_AREACODE AGENT_PHONE AGENT_LNAME AGENT_YTD_SLS	Agent code Agent area code Agent telephone number Agent last name Agent year-to-date sales	CHAR(3) CHAR(3) CHAR(8) VARCHAR(20) NUMBER(9,2)	999 999 999-9999 Xxxxxxx 9,999,999.99		Y Y Y Y	РК	

 FK
 =Foreign key

 PK
 =Primary key

 CHAR
 =Fixed character length data (1–255 characters)

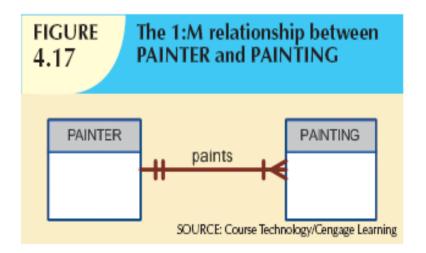
 VARCHAR
 =Variable character length data (1–2,000 characters)

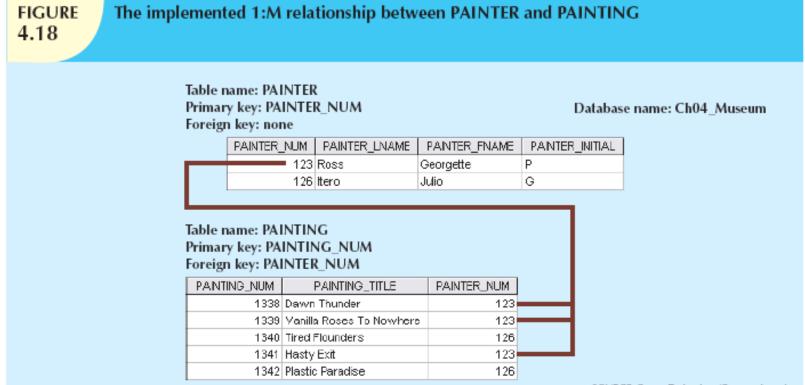
 NUMBER
 =Numeric data (NUMBER(9,2)) are used to specify numbers with two decimal places and up to nine digits, including the decimal places. Some RDBMSs permit the use of a MONEY or CURRENCY data type.

The Data Dictionary and System Catalog (cont'd.)

- Homonym
 - Indicates the use of the same name to label different attributes
- Synonym
 - Opposite of a homonym
 - Indicates the use of different names to describe the same attribute

Relationships within the Relational Database

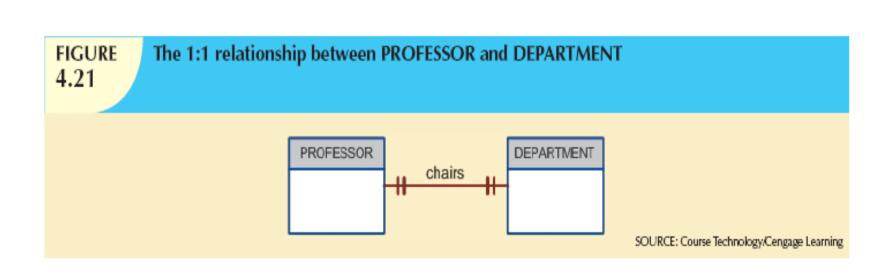

- 1:M relationship
 - Relational modeling ideal
 - Should be the norm in any relational database design
- 1:1 relationship
 - Should be rare in any relational database design


Relationships within the Relational Database (cont'd.)

- M:N relationships
 - Cannot be implemented as such in the relational model
 - M:N relationships can be changed into 1:M relationships

The 1:M Relationship

- Relational database norm
- Found in any database environment



SOURCE: Course Technology/Gengage Learning

The 1:1 Relationship

- One entity related to only one other entity, and vice versa
- Sometimes means that entity components were not defined properly
- Could indicate that two entities actually belong in the same table
- Certain conditions absolutely require their use

The M:N Relationship

- Implemented by breaking it up to produce a set of 1:M relationships
- Avoid problems inherent to M:N relationship by creating a composite entity
 - Includes as foreign keys the primary keys of tables to be linked

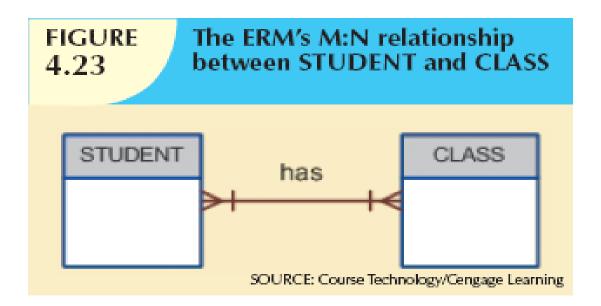


FIGURE 4.25

Converting the M:N relationship into two 1:M relationships

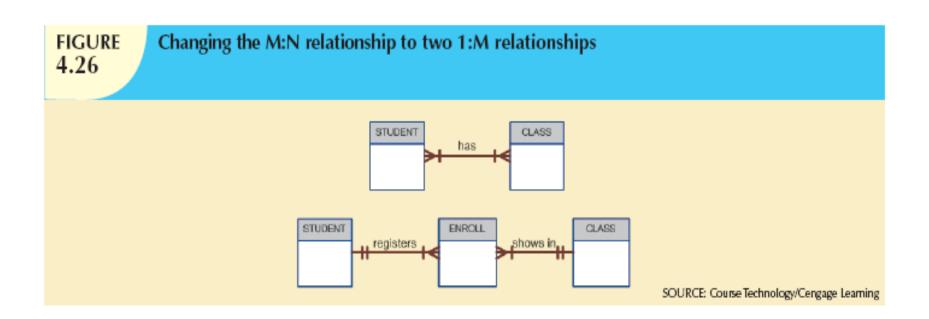
Table name: STUDENT Primary key: STU_NUM Foreign key: none

STU_NUM	STU_LNAME
321452	Bowser
324257	Smithson

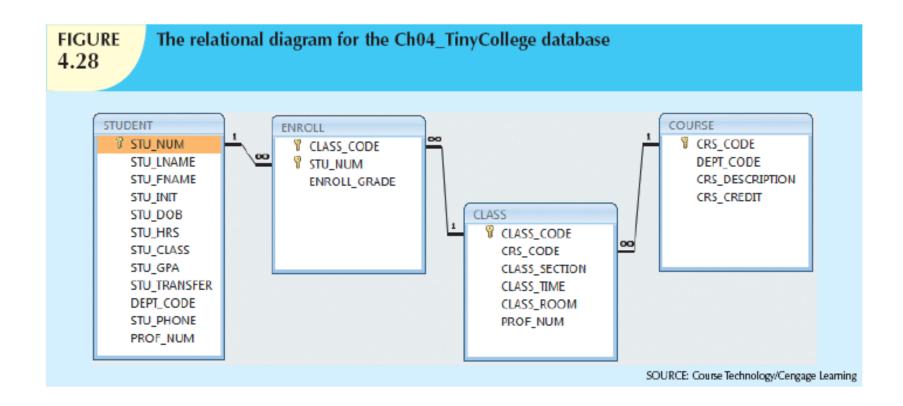
Table name: ENROLL Primary key: CLASS_CODE + STU_NUM Foreign key: CLASS_CODE, STU_NUM

CLASS_CODE	STU_NUM	ENROLL_GRADE
10014	321452	С
10014	324257	B
10018	321452	A
10018	324257	B
10021	321452	С
10021	324257	C

Table name: CLASS Primary key: CLASS_CODE Foreign key: CRS_CODE

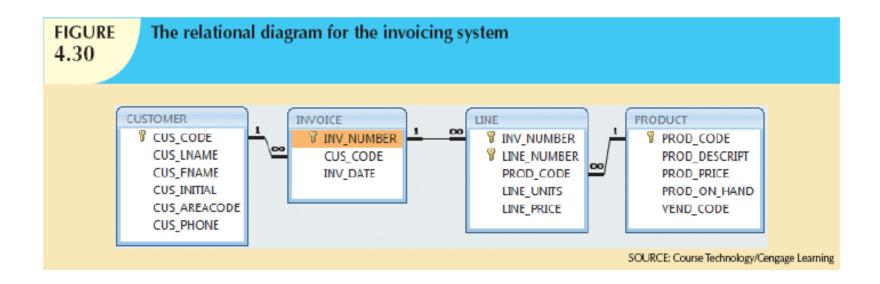

CLASS_CODE	CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
10018	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
10021	QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114

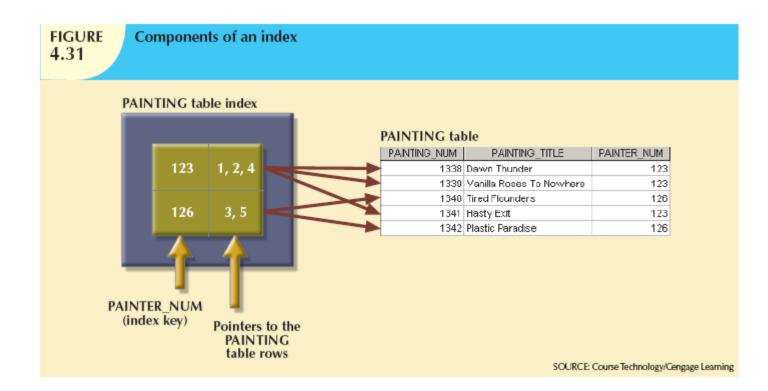

SOURCE: Course Technology/Cengage Learning


41

© 2013 Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.

Database name: Ch04_CollegeTry2




Data Redundancy Revisited

- Data redundancy leads to data anomalies
 Can destroy the effectiveness of the database
- Foreign keys
 - Control data redundancies by using common attributes shared by tables
 - Crucial to exercising data redundancy control
- Sometimes, data redundancy is necessary

Indexes

- Orderly arrangement to logically access rows in a table
- Index key
 - Index's reference point
 - Points to data location identified by the key
- Unique index
 - Index in which the index key can have only one pointer value (row) associated with it
- Each index is associated with only one table

Codd's Relational Database Rules

- In 1985, Codd published a list of 12 rules to define a relational database system
 - Products marketed as "relational" that did not meet minimum relational standards
- Even dominant database vendors do not fully support all 12 rules

Summary

- Tables are basic building blocks of a relational database
- Keys are central to the use of relational tables
- Keys define functional dependencies
 - Superkey
 - Candidate key
 - Primary key
 - Secondary key
 - Foreign key

Summary (cont'd.)

- Each table row must have a primary key that uniquely identifies all attributes
- Tables are linked by common attributes
- The relational model supports relational algebra functions
 - SELECT, PROJECT, JOIN, INTERSECT UNION, DIFFERENCE, PRODUCT, DIVIDE
- Good design begins by identifying entities, attributes, and relationships
 - 1:1, 1:M, M:N

51

^{© 2013} Cengage Learning. All Rights Reserved. This edition is intended for use outside of the U.S. only, with content that may be different from the U.S. Edition. May not be scanned, copied, duplicated, or posted to a publicly accessible website, in whole or in part.