
INF 3703  -  DATABASES II

Summary  2013

Ref         Chap                   Title                                                                                     Page  

1. 10 Distributed Databases 2

2. 11 Interacting with Databases Through the Web 16

3. 12 Database Administration & Security 28

4. 13 Managing Transactions and Concurrency 44

5. 14 Managing Database and SQL Performance 60

6. 15 Databases for Decision Support 72

Database Principles: Fundamentals of Design, Implementation, and Management
10th Edition - Coronel C,  Morris S,  Rob P.

v1.00   September 2013
Ron Barnard



Chapter 10  -  Distributed Databases

Chapter 10  -  Distributed Databases

Summary

• A distributed  database  stores  logically  related  data  in  two  or  more  physically  independent  sites 

connected via a computer network. The database is divided into fragments, which can be a horizontal 

set of rows or a vertical set of attributes. Each fragment can be allocated to a different network node. 

• Distributed processing is the division of logical database processing among two or more network nodes. 

Distributed  databases  require  distributed  processing.  A  distributed  database  management  system 

(DDBMS) governs the processing and storage of logically related data through interconnected computer 

systems.

• The main components of a DDBMS are the transaction processor (TP) and the data processor (DP). The 

transaction processor component is the resident software on each computer node that requests data.  

The data processor component is the resident software on each computer node that stores and retrieves 

data. 

• Current database systems can be classified by the extent to which they support processing and data 

distribution.  Three  major  categories  are  used  to  classify  distributed  database  systems:  single-site 

processing, single-site data (SPSD);  multiple-site processing, single-site data (MPSD);  and multiple-site 

processing, multiple-site data (MPMD).

• A homogeneous  distributed  database  system  integrates  only  one  particular  type  of  DBMS  over  a 

computer network. A heterogeneous distributed database system integrates several different types of  

DBMSs over a computer network.

• DDBMS  characteristics  are  best  described  as  a  set  of  transparencies:   distribution,  transaction, 

performance, failure and heterogeneity. All transparencies share the common objective of making the 

distributed database behave as though it were a centralized database system;  that is, the end user sees 

the data as part of a single, logical centralized database and is unaware of the systems' complexities.

• A transaction is formed by one or more database requests. An undistributed transaction updates or 

requests data from a single site. A distributed transaction can update or request data from multiple sites.

• Distributed concurrency control is required in a network of distributed databases. A two-phase COMMIT 

protocol is used to ensure that all parts of a transaction are completed.

• A distributed DBMS evaluates every data  request  to  find the optimum access path  in  a distributed 

database. The DDBMS must optimize the query to reduce associated access costs, communication 

costs, and CPU costs.

Page  2  of  90



Chapter 10  -  Distributed Databases

• The design of  a  distributed database must  consider  the fragmentation and replication of  data.  The 

designer must also decide how to allocate each fragment or replica to obtain better overall response 

time  and  to  ensure  data  availability  to  the  end  user.  Ideally,  a  distributed  database  should  evenly 

distribute data to maximize performance, availability, and location awareness.

• A database can be replicated over several different sites on a computer network. The replication of the 

database fragments has the objective of  improving data availability,  thus decreasing access time. A 

database can be partially, fully, or not replicated.  Data allocation strategies are designed to determine 

the location of the database fragments or replicas.

• The  CAP  theorem  states  that  a  highly  distributed  data  system  has  some  desirable  properties  of 

consistency,  availability,  and  partition  tolerance.  However,  a  system can  only  provide  two  of  these 

properties at a time.

Page  3  of  90



Chapter 10  -  Distributed Databases

Content

10.1  The Evolution of Distributed Database Management Systems

A distributed database management system (DDBMS) governs the storage and processing of logically 
related  data  over  interconnected  computer  systems,  in  which  both  data  and  processing are  distributed 
among several sites.

10.2  DDBMS  Advantages and Disadvantages

Advantages Disadvantages

Data  are  located  near  the  site  of  greatest 
demand -  Data  dispersed  to  match  business 
requirements.

Complexity  of  management  and  control - 
Working with data at various locations.

Faster  data  access -  Work  with  nearest  stored 
data subset.

Technological difficulty - More technical issues to 
deal with.

Faster  data  processing -  Data  processed  at 
several sites.

Security -  Probability  of  security  lases  increases 
when data are stored at multiple sites.

Growth  facilitation -  New  sites  can  be  added 
without affecting the operation of other sites.

Lack of standards - No standard communication 
protocols.

Improved  communications -  Local  sites  are 
smaller and located closer to customers.

Increased  storage  and  infrastructure 
requirements - Multiple copies of data at multiple 
sites.

Reduced operating costs - More cost-effective to 
add nodes to a network than upgrade a mainframe.

Increased training cost - Higher than compared to 
a centralized model.

User-friendly interface - PC's equipped with easy-
to-use GUI.

Costs - Require duplicated infrastructure.

Less  danger  of  single-point  failure -  If  one 
computer  fails,  workload  is  picked  up  by  other 
computers.

Processor independence - User can access any 
available  copy  of  the  data,  and  request  is 
processed by any processor at the data location.

10.3  Distributed Processing and Distributed Databases

Distributed  processing -   a  databases'  logical  processing  is  shared  among  two  or  more  physically 
independent sites that are connected through a network. The database is located on one computer,  but 
several sites can access the data and update the database.

Distributed database  -  stores a logically related database over two or more physically independent sites, 
connected via a network. 

Page  4  of  90



Chapter 10  -  Distributed Databases

Database fragments  -  Distributed database is composed of several parts known as database fragments, 
located at different sites. Can be replicated among various sites. Each fragment is managed by its local 
database process.

10.4  Characteristics of Distributed Database Management Systems

A DDBMS  governs  the  storage  and  processing  of  logically  related  data  over  interconnected  computer 
systems in which both data and processing functions are distributed among several sites. DBMS must have  
the following functions to be classified as distributed -

• Application interface  -  to interact with users, application programs, and other DBMSs.
• Validation  -  to analyze data requests for syntax correctness.
• Transformation  -  t decompose complex requests into atomic data request components.
• Query optimization  -  to find the best access strategy.
• Mapping  -  to determine the data location of local and remote fragments.
• I/O interface  -  to read / write data t / from permanent storage.
• Formatting  -  to prepare data for presentation.
• Security  -  to provide data privacy.
• Backup and recovery  -  to ensure availability of the database in case of failure.
• DB administration features  -  for database administrator.
• Concurrency control  -  to manage simultaneous data access and to ensure data consistency.
• Transaction management  -  to ensure that data moves from one consistent state to another.

A fully distributed database management system must perform all of the functions of a centralized DBMS 
system -

• Receive the request of an application or end user.
• Validate, analyze, and decompose the request.
• Map the requests' logical-to-physical data components.
• Decompose the request into several disk I/O operations.
• Search for, locate, read, and validate the data.
• Ensure database consistency, security, and integrity.
• Validate the data for the conditions, if any, specified by the request.
• Present the data in the required format.

10.5  DDBMS Components

DDBMS must include at least the following components -

• Computer workstations or remote devices.

• Network hardware and software

• Communications media, that carry the data from one node to another.

• Transaction Processor (TP) -  which is the software component found in each computer or device 
that requests data. Receives and processes the applications' remote and local data requests. (Also 
known as the Application Processor (AP) or Transaction Manager (TM)).

• Data Processor (DP)  -  which is the software component residing on each computer or device that 
stores and retrieves data located at that site. (Also known as Data manager (DM)). May even be a 
centralized DBMS.

Page  5  of  90



Chapter 10  -  Distributed Databases

A TP and a DP can reside on the same computer, allowing an end user to access both local and remote data 
transparently.

10.6  Levels of Data and Process Distribution

Single-site data Multiple-site-data

Single-site process Host DBMS n/a

Multiple-site process 
File server 
Client / server DBMS (LAN DBMS)

Fully distributed
Client / server DDBMS

10.6.1  Single-Site Processing,  Single-Site Data  (SPSD)

All processing is done on a single host computer and all data are stored on the host computers' local disk  
system. The DBMS is on the host computer, which is accessed by terminals. Mainframe / midrange Unix /  
Linux server DBMSs.

10.6.2  Multiple-Site Processing,  Single-Site Data  (MPSD)

Multiple processes run on different computers that share a single data repository. Typically a network file 
server running conventional applications that are accessed through a network. The DP is on the server, TP 
on each computer.

10.6.3  Multiple-Site Processing,  Multiple-Site Data  (MPMD)

Fully distributed DBMS with support for multiple data processors (DP) and transaction processors (TP) at  
multiple sites.

Homogeneous DDBMS  -  integrate multiple instances of the same DBMS over a network.

Heterogeneous DDBMS  -  integrate different types of DBMSs over a network, but all support the same data 
model.

Fully Heterogeneous DDBMS  -  supports different DBMSs, each one supporting a different data model, 
running under different computer systems.

10.7  Distributed Database Transparency Features

A distributed database system should provide some desirable transparency features that hide the systems'  
complexity to to the end user. Should appear similar to working on a centralized DBMS.

Minimum desirable DDBMS transparency features are - 

• Distribution  transparency  -   allows  a  distributed  database  to  be  treated  as  a  single  logical  
database.

• Transaction transparency  -  allows a transaction to update data at more than one network site. 
Ensures that the transaction will be either entirely completed or aborted, thus maintaining database 
integrity.

• Failure transparency  -  ensures that the system will continue to operate in the event of a node or 
network failure. Important feature.

Page  6  of  90



Chapter 10  -  Distributed Databases

• Performance transparency  -  allows the system to perform as if it were a centralized DBMS.

• Heterogeneity transparency  -  allows the integration of several different local DBMSs (relational, 
network, and hierarchical) under a common, or global, schema.

10.8  Distribution Transparency

Allows a physically dispersed database to be managed as though it were a centralized database.
Three levels of distribution transparency -

• Fragmentation transparency  -  highest level of transparency. End user does not need to know that 
a database is partitioned. Neither fragment names nor locations are specified prior to data access.

• Location transparency  -  exists when the end user must specify the database fragment names, but 
does not need to specify the fragment locations.

• Local mapping transparency  -  exists when the end user must specify both the fragment names 
and locations.

Distribution transparency is supported by a distributed data dictionary (DDD) or distributed data catalog 
(DDC), which contains the description of the entire database as seen by the database administrator.

10.9  Transaction Transparency

Transaction  transparency  is  a  DDBMS  property  that  ensures  database  transactions  will  maintain  the 
distributed databases' integrity and consistency. A DDBMS database transaction can update data stored in 
many different computers connected in a network. Transaction transparency ensures that the transaction will  
be completed only when all database sites involved in the transaction complete their part of the transaction.

10.9.1  Distributed Requests and Distributed Transactions

Remote request  -  lets a single SQL statement access the data that are to be processed by a single remote 
database processor.

Remote transaction  -  composed of several requests, accesses data at a single remote site.

Distributed request  -  lets a single SQL statement reference data located at several different local or 
remote DP sites.

Distributed transaction  -  can reference several different local or remote DP sites. Each single request can 
reference only one local or remote DP site, the transaction as a whole can reference multiple DP sites.

Remote  -  single location.
Distributed  -  multiple locations.

Request  -  single SQL statement.
Transaction  -  multiple SQL statements.

10.9.2  Distributed Concurrency Control

Concurrency control  is  especially  important  in  distributed databases because multisite,  multiple  process 
operations are more likely to create data inconsistencies and deadlocked transactions. The TP component of  
a DDBMS must ensure that all parts of a transaction are completed at all sites before a final COMMIT is  
issued.

Page  7  of  90



Chapter 10  -  Distributed Databases

If a transaction updates data at three DP sites, and the first two complete and COMMIT the data, but the third 
cannot  commit,  there  would  be  an  inconsistent  database  with  integrity  problems  -  cannot  uncommit 
committed data. The solution is a two-phase commit protocol.

10.9.3  Two-Phase COMMIT Protocol

Centralized databases require  only one DP. Distributed databases make it  possible  for  a transaction to 
access data at several sites. A final COMMIT cannot be issued until all sites have committed their parts of a  
transaction. The two-phase commit protocol (2PC) guarantees that if a portion of a transaction operation 
cannot be committed, all changes made at the other sites participating in the transaction will be undone to  
maintain a consistent database.

Each DP maintains its own transaction log. The two-phase commit protocol requires that the transaction log 
entry for each DP be written before the database fragment is actually updated. Therefore it requires a DO-
UNDO-REDO protocol and a write-ahead protocol. 

The DO-UNDO-REDO protocol is used by the DP to roll transactions back and forward with the help of the 
systems' transaction log entries. Defines three types of operations -

• DO performs the operation and records the "before" and "after" values in the transaction log.
• UNDO reverses an operation, using the log entries written by the DO portion of the sequence.
• REDO redoes an operation, using the log entries written by the DO portion of the sequence.

Write-ahead protocol  -   Ensures that the DO-UNDO-REDO operations can survive a system crash. It  
forces the log entry to be written to permanent storage before the actual operation takes place. If one of the 
nodes fails to commit, the information necessary to recover the database is in the transaction log.

10.10  Performance and Failure Transparency

Performance transparency allows a DDBMS to perform as if it were a centralized database. No performance 
degradation should be incurred due to data distribution. 

Failure transparency ensures that the system will  continue to operate in the case of  a node or network 
failure.

Carefully planning how to partition a database and where to locate the database fragments can help ensure 
the performance and consistency of a distributed database.

10.11  Distributed Database Design

Design of a distributed database introduces three new issues -

• How to partition the database into fragments;

• Which fragments to replicate;

• Where to locate those fragments and replicas.

Data fragmentation and data replication deal with the first two issues, and data allocation deals with the third  
issue. Ideally, data in a distributed database should be evenly distributed to maximize performance, increase 
availability (reduce bottlenecks), and provide location awareness, an ever-increasing requirement for mobile 
applications.

Page  8  of  90



Chapter 10  -  Distributed Databases

10.11.1  Data Fragmentation

Data fragmentation  -  allows one to break a single object into two or more segments, or fragments. The  
object might be a users' database, a system database, or a table. Each fragment can be stored at any site  
over a computer network. Information about data fragments is stored in the distributed data catalog (DDC), 
from which it is accessed by the TP to process requests.

Consider table level fragmentation:

Horizontal fragmentation  -  division of a relation into subsets (fragments) of tuples (rows). Each fragment 
is  stored at  a different  node, and each fragment has unique rows. The unique rows all  have the same 
attributes (columns). Each fragment represents the equivalent of a SELECT statement, with the WHERE 
clause on a single attribute.

• Round-robin partitioning  -  Rows are assigned to a given fragment in round-robin fashion (F1, F2,  
F3 etc) to ensure an even distribution. Not a good strategy if location awareness is required.

• Range  partitioning  -   based  on  a  partition  key,  one  or  more  attributes  which  determine  the 
fragment  in  which  a  row  will  be  stored.  Allows  location  awareness.  Most  common  and  useful  
partitioning strategy.

Vertical fragmentation  -  division of a relation into attribute (column) subsets. Each subset (fragment is  
stored at a different node, and each fragment has unique columns - with the exception of the key column,  
which is common to all fragments. Equivalent of the PROJECT statement.

Mixed fragmentation  -   combination of  horizontal  and vertical  strategies.  A table may be divided into 
several horizontal subsets (rows), each one having a subset of the attributes (columns).

10.11.2  Data Replication

Data replication  -  refers to the storage of data copies at multiple sites served by a computer network. 
Fragment copies can be stored at at several sites to serve specific information requirements. The existence  
of fragment copies can enhance data availability and response time, so data copies can help to reduce 
communication and total query costs.

Mutual consistency rule  -  requires that all copies of data fragments must be identical. The DDBMS must 
ensure that a database update is performed at all sites where replicas exist.

• Push replication  -  After a data update, the originating DP node sends the changes to the replica 
nodes. Focuses on maintaining data consistency. Decreases data availability due to latency involved 
in ensuring data consistency at all nodes.

• Pull replication  -  After a data update, the originating DP node sends "messages" to the replica 
nodes to notify them of the update. The replica nodes decide when to apply the update. Updates 
propagate more slowly to the replicas, with the focus on maintaining data availability.  Allows for  
temporary data inconsistencies.

Benefits of replication  -  improved data availability, better load distribution, improved data failure tolerance,  
and reduced query costs.

Disadvantages of replication  -  additional DDBMS processing overhead because each data copy must be 
maintained by the system. There are associated storage costs and increased transaction times.

There are three replication scenarios  -  

• Fully replicated database  -  stores multiple copies of each database fragment at multiple sites. 
Can be impractical due to the amount of overhead it imposes on the system.

Page  9  of  90



Chapter 10  -  Distributed Databases

• Partially replicated database   -  stores multiple copies of some database fragments at multiple 
sites. Most DDBMSs are able to handle partially replicated database well.

• Unreplicated database  -  stores each database fragment at a single site, there are no duplicate 
database fragments.

10.11.3  Data Allocation

Data allocation  -  describes the process of deciding where to locate data. Data allocation is closely related 
to the way a database is divided or fragmented. Three strategies -

• Centralized data allocation  -  entire database is stored at one site.

• Partitioned data allocation  -  database is divided into two or more disjointed parts (fragments) and 
stored at two or more sites.

• Replicated data allocation  -  copies of one or more database fragments are stored at several sites.

10.12  The CAP Theorem

There are three commonly desirable properties in a highly distributed data system -

Consistency  -   All  nodes should see the same data at the same time, all  replicas should be updated 
immediately. Involves dealing with latency and network partitioning delays.

Availability  -  A request is always fulfilled by the system, no request is ever lost.

Partition tolerance  -  System continues to operate even in the event of  node failure. The system will fail  
only if all nodes fail. 

CAP Theorem  -  It is impossible for a system to provide all three properties at the same time.

ACID properties  -  Four database transaction properties - Atomicity, Consistency, Isolation, and Durability, 
which ensure that all successful transactions result in a consistent database state,

When dealing with highly distributed systems, some companies tend to forfeit the consistency and isolation 
components of the ACID properties to achieve higher availability. Generated a new type of distributed data 
systems - 

BASE  Basically available, soft state, eventually consistent  -  A data consistency model in which data 
changes  are  not  immediate,  but  propagate  slowly  through  the  system  until  all  replicas  are  eventually 
consistent. Eg: NoSQL databases provide highly distributed database with eventual consistency.

DBMS Type Consistency Availability Partition 
Tolerance

Transaction 
Model

Trade-Off

Centralized 
DBMS

High High n/a ACID No distributed data processing

Relational 
DDBMS

High Relaxed High ACID
(2PC)

Sacrifices  availability  to  ensure 
consistency and isolation

NoSQL
DDBMS

Relaxed High High BASE Sacrifices consistency to ensure 
availability

Page  10  of  90



Chapter 10  -  Distributed Databases

10.13  CJ Dates' 12 Commandments for Distributed Databases

Most vendors have implemented their own versions of distributed databases. CJ Dates 12 Commandments 
represent a useful target, or ideal. No current DDBMS conforms to all of them.

-ooOoo-

Page  11  of  90



Chapter 10  -  Distributed Databases

Key  Terms

• application processor (AP)  -  See transaction processor  (TP).

• basically available, soft state, eventually consistent (BASE)  -  A data consistency model in which 
data  changes  are  not  immediate,  but  propagate  slowly  through  the  system  until  all  replicas  are 
eventually consistent.

• centralized data allocation  -  A data allocation strategy in which the entire database is stored at one 
site. Also known as a centralized database.

• client /  server architecture   -   The arrangement of  hardware and software components to form a 
system composed of clients, servers, and middleware. The client / server architecture features a user of 
resources, or a client, and a provider of resources, or a server.

• coordinator  -  The transaction processor (TP) node that coordinates the execution of a two-phase 
COMMIT in  a  DDBMS.  See  also  data  processor (DP),  transaction  processor (TP),  and  two-phase 
commit protocol.

• data allocation -  In a distributed DBMS, the process of deciding where to locate data fragments.

• database fragments  -  See below.

• data fragmentation  -  A characteristic of a DDBMS that allows a single object to be broken into two or 
more segments or fragments. The object might be a users database, a system database, or a table.  
Each fragment can be stored at any site on a computer network.

• data  manager  (DM)  -   A DP specialist  who evolved  into  a  department  supervisor.  Roles  include 
managing technical and human resources, supervising senior programmers, and troubleshooting the 
program.  Also known as data processing (DP) manager.

• data processor  (DP)  -  The resident software component that stores and retrieves data through a 
DDBMS. The DP is responsible for managing the local data in the computer and coordinating access to  
that data. See also transaction processor (TP).

• data replication   -   The storage of  duplicated database fragments at  multiple  sites on a  DDBMS. 
Duplication of the fragments is transparent to the end-user. Data replication provides fault tolerance and 
performance enhancements.

• distributed  database  -   A  logically  related  database  that  is  stored  in  two  or  more  physically 
independent sites.

• distributed database management system (DDBMS)  -  A DBMS that supports a database distributed 
across several different sites; a DDBMS governs the storage and processing of logically related data 
over  interconnected computer  systems in  which both  data  and  processing functions  are  distributed 
among several sites.

• distributed data catalog  (DDC)  -  A data dictionary that contains the description (fragment names, 
locations) of a distributed database. Also known as a distributed data dictionary (DDD).

• distributed data dictionary (DDD)  -  See distributed data catalog.

• distributed global schema  -  The database schema description of a distributed database as seen by 
the database administrator.

• distributed  processing   -   Sharing  the  logical  processing  of  a  database  over  two  or  more  sites 
connected by a network.

Page  12  of  90



Chapter 10  -  Distributed Databases

• distributed request  -  A database request that allows a single SQL statement to access data in several  
remote data processors (DPs) in a distributed database.

• distributed  transaction  -   A  database  transaction  that  accesses  data  in  several  remote  data 
processors (DPs) in a distributed database.

• distributed transparency  -  A DDBMS feature that allows a distributed database to look like a single 
logical  database to an end user.

• DO-UNDO-REDO protocol  -  A protocol used by a data processor (DP) to roll back, or roll forward 
transactions with the help of a systems' transaction log entries.

• failure transparency  -  A  feature that allows continuous operation of a DDBMS, even if a network node 
fails.

• fragmentation transparency  -  A DDBMS feature that allows a system to treat a distributed database 
as a single database even though it is divided into two or more fragments.

• fully heterogeneous DDBMS   -  A system that integrates different types of database management 
systems  (hierarchical,  network,  and  relational)  over  a  network.  It  supports  different  database 
management systems that may even support different data models running under different computer 
systems, such as mainframes, minicomputers, and microcomputers. See also  heterogeneous DDBMS 
and homogeneous DDBMS.

• fully replicated database -  In a DDBMS, the distributed database that stores multiple copies of each 
database fragment at multiple sites.

• heterogeneity transparency  -  A feature that allows a system to integrate several centralized DBMSs 
into one logical DDBMS.

• heterogeneous  DDBMS  -   A  system  that  integrates  different  types  of  centralized  database 
management systems over a network. See also fully heterogeneous distributed database system (fully 
heterogeneous DDBMS) and homogeneous DDBMS.

• homogeneous DDBMS  -  A system that integrates only one type of centralized database management 
system over a network. See also heterogeneous DDBMS and fully heterogeneous distributed database 
system (fully heterogeneous DDBMS).

• horizontal fragmentation  -  The distributed database design process that breaks a table into subsets 
of unique rows. See also database fragment and vertical fragmentation.

• local mapping transparency  -  A property of a DDBMS in which database access requires the end 
user to know both the name and location of the fragments. See also location transparency.
 

• location transparency  -  A property of a DDBMS in which database access requires the user to know 
only the name of  the database fragments. (Fragment locations need not be known).  See also local  
mapping transparency.

• mixed fragmentation  -  A combination of horizontal and vertical strategies for data fragmentation, in 
which a table may be divided into several rows and each row has a subset of the attributes (columns).

• multiple-site processing,  multiple-site data  (MPMD)  -  A scenario describing a fully distributed 
database management system with support for multiple data processors and transaction processors at  
multiple sites.

• multiple-site processing,  single-site data  (MPSD)  -  A scenario in which multiple processes run on 
different computers sharing a single data repository.

Page  13  of  90



Chapter 10  -  Distributed Databases

• mutual consistency rule  -  A data replication rule that requires all copies of data fragments to be 
identical.

• network latency  -  The delay imposed by the amount of time required for a data packet to make a 
round trip from point A to point B.

• network partitioning  -  

• partially  replicated  database   -   A distributed  database  in  which  copies  of  only  some  database 
fragments are stored at multiple sites. See also fully replicated database.

• partitioned data allocation  -   A data  allocation strategy of  dividing a  database into  two  or  more 
fragments that are stored at two or more sites.

• partition key  -  In partitioned databases, one or more attributes in a table that determine the fragment 
in which a row will be stored.

• performance transparency  -  A DDBMS feature that allows a system to perform as though it were a 
centralized DBMS.

• remote request  -  A DDBMS feature that allows a single SQL statement to access data in a single 
remote DP. See also remote transaction.

• remote transaction  -  A DDBMS feature that allows a transaction (formed by several requests) to 
access data in a single remote DP. See also remote request.

• replica transparency  -  The DDBMSs ability to hide the existence of multiple copies of data from the 
user.

• replicated data allocation   -   A data allocation strategy in which copies of  one or more database 
fragments are stored at several sites.

• single-site processing,  single-site data  (SPSD)  -  A scenario in which all processing is done on a 
single CPU or host computer, and all data are stored on the host computers' local disk.

• subordinates  -  In a DDBMS, a data processor (DP) node that participates in a distributed transaction 
using the two-phase COMMIT protocol.

• transaction manager  (TM)  -  See transaction processor (TP).

• transaction processor  (TP)  -  In a DDBMS, the software component on each computer that requests 
data.  The  TP is  responsible  for  the  execution  and  coordination  of  all  databases issued by a  local  
application  that  accesses  data  on  any  DP.  Also  called  transaction  manager (TM).  See  also  data 
processor (DP).

• transaction transparency  -  A DDBMS property that ensures database transactions will maintain the 
distributed databases' integrity and consistency, and that a transaction will be completed only when all 
database sites involved complete their part of the transaction.

• two-phase commit protocol -  In a DDBMS, an algorithm used to ensure atomicity of transactions and 
database consistency, as well as integrity in distributed transactions.

• unique fragment  -  In a DDBMS, a condition in which each row is unique, regardless of which fragment  
it is located in.

• unreplicated database  -  A distributed database in which each database fragment is stored at a single 

Page  14  of  90



Chapter 10  -  Distributed Databases

site.

• vertical fragmentation  -  In distributed database design, the process that breaks a table into a subset 
of columns from the original table. Fragments must share a common primary key. See also  database 
fragment and horizontal fragmentation.

• write-ahead protocol  -  In concurrency control, a process that ensures transaction logs are written to  
permanent storage before any database data are actually updated.  Also called write-ahead-log protocol.

--ooOoo--

Page  15  of  90



Chap 11  -  Interacting with Databases through the Web

Chap 11  -  Interacting with Databases through the Web

Summary

• Database connectivity refers to  the mechanisms through which application programs connect  and 

communicate  with  data  repositories.  Database  connectivity  software  is  also  known  as  database 

middleware.

• Microsoft database connectivity interfaces are dominant players in the market and enjoy the support of 

most database vendors. OBDC,  OLE-DB,  and  ADO.NET form the backbone of Microsofts' Universal 

Data Access (UDA) architecture.

• Native database connectivity refers tot he connection interface that is provided by the database vendor 

and is unique to that  vendor.  OBDC is probably the most widely supported database connectivity 

interface. OBDC allows any Windows application to access relational data sources using standard 

SQL.  Data Access Objects (DAO) is an older,  object-oriented application interface.  Remote Data 

Objects (RDO) is a higher-level, object-oriented application interface used to access remote database 

servers. RDO was optimized to deal with server-based databases such as MS SQL Server and Oracle.

• Object Linking and Embedding for Database (OLE-DB) is database middleware developed with the 

goal of adding object-oriented functionality for access to relational and nonrelational data.  ActiveX 

Data  Objects  (ADO) provides  a  high-level,  application-oriented  interface  to  interact  with  OLE-DB, 

DAO,  and  RDO. Based on ADO,  ADO.NET is the data access component of  Microsofts'  .NET 

application  development  framework.  Java  Database  Connectivity  (JDBC)  is  the  standard  way  to 

interface Java applications with data sources.

• Database access through the Web is achieved through middleware. To improve the capabilities on the  

client side of the Web browser, you must use plug-ins and other client-side extensions such as Java 

and JavaScript, or ActiveX and VBScript. On the server side, Web application servers are middleware  

that expand the functionality of Web servers by linking them to a wide range of services, such as 

databases, directory systems, and search engines.

• Extensible Markup Language (XML) facilitates the exchange of B2B and other data over the Internet. 

XML provides  the semantics  that  facilitate  the  exchange,  sharing,  and  manipulation  of  structured 

documents across organizational boundaries.  XML produces the description and representation of 

data,  thus  setting  the  stage  for  data  manipulation  in  ways  that  were  not  possible  before.  XML 

documents can be validated through the use of document type definition (DTD) documents, and XML 

schema definition (XSD) documents.

• Cloud computing is a computing model that provides ubiquitous, on-demand access to a shared pool 

of configurable resources that can be rapidly provisioned. SQL data services (SDS) refers to a cloud 

Page  16  of  90



Chap 11  -  Interacting with Databases through the Web

computing-based data management service that provides relational data storage, ubiquitous access,  

and local management to companies of all sizes. This service enables rapid application development 

for  businesses  with  limited  information  technology  resources.  SDS  allows  rapid  deployment  of 

business solutions using standard protocols and common programming interfaces.

Page  17  of  90



Chap 11  -  Interacting with Databases through the Web

Content

11.1  Database Connectivity

Database connectivity  -   refers  to  the mechanisms through which application programs connect  and 
communicate with data repositories.

Database middleware  -  Database connectivity software is also known as database middleware, because it 
provides an interface between the application program and the database.

Data repository (data source)  -  represents the data management application, such as Oracle RDBMS, 
SQL Server, or IBM DBMS, that will be used to store the data.

A standard  database  connectivity  interface  is  necessary  for  enabling  applications  to  connect  to  data 
repositories.

Universal Data Access (UDA)  -  a collection of technologies used to access any type of data source and 
manage the data through a common interface. OBDC, OLE-DB, ADO.NET.  (Microsoft).

11.1.1  Native SQL Connectivity

Most DBMS vendors provide their own methods for connecting to their databases. Native SQL connectivity  
refers to the connection interface  that is provided by the database vendor, and is unique to that vendor. Best  
example is Oracles' SQL*Net interface for the Oracle RDBMS.

Most current DBMS products support other database connectivity standards, ODBC is the most common.

11.1.2  ODBC,  DAO,  and  RDO

Open Database Connectivity  -  (ODBC) is a superset of the SQL Access Group Call Level Interface (CLI) 
standard for database access. ODBC is probably the most widely supported database connectivity interface. 
It allows any Windows application to access relational data sources, using SQL via a standard API. Does not  
provide much functionality beyond its ability to execute SQL to manipulate relational data, need better ways.

Data Access Objects (DAO)  -  is an object-oriented API used to access MS Access, MS FoxPro, and 
DBase databases (using the Jet data engine) from Visual Basic programs. It provides an optimized interface 
that exposes the functionality of the Jet data engine. Can also be used to access other relational-style data  
sources.

Remote Data Objects (RDO)  -   is  a higher level,  object-oriented application interface used to access 
remote database servers. RDO uses the lower-level DAO and ODBC for direct access to databases. RDO is 
optimized to deal with server-based databases such as MS SQL Server, Oracle, and DB2.

11.1.3  OLE-DB

ODBC, DAO, and RDO do not provide support for nonrelational data.

Object Linking and Embedding for Database (OLE-DB)  -   is  database middleware that adds object-
oriented functionality for access to relational and non-relational data. It is based on Microsofts' Component 
Object Model (COM).

OLE-DB does not provide support for scripting languages used for Web development, such as Active Server 
pages (ASP) and ActiveX. 

ActiveX Data Objects (ADO)  -  provides a high-level, application-oriented interface to interact with OLE-DB, 

Page  18  of  90



Chap 11  -  Interacting with Databases through the Web

DAO, and RDO.  ADO provides a unified interface to access data from any programming language that uses 
the underlying OLE-DB objects. Although ADO is an improvement over the OLE-DB model,  Microsoft is 
encouraging the use of its newer data access framework, ADO.NET.

11.1.4  ADO.NET

Based  on  ADO,  ADO.NET is  the  data  access  component  of  Microsofts  .NET application  development 
framework. The .NET framework extends and enhances the functionality provided by the ADO / OLE-DB 
duo. ADO.NET introduced two new features that are critical for the development of distributed applications:  
DataSets and XML support.

DataSet  -  is a disconnected, memory-resident representation of the database. The DataSet contains tables, 
columns, rows, relationships, and constraints. Once the data are read from the data provider, they are placed  
in  a  memory-resident  DataSet,  which  is  then disconnected form the data  provider.  The data consumer 
application interacts with the data in the DataSet object to make inserts, updates, and deletes in the DataSet.  
Once the processing is done, the DataSet is synchronized with the data source and the changes are made 
permanent.

The DataSet is stored internally in XML format, and the data in the DataSet can be made persistent as XML 
documents. This is critical in todays' distributed environments.

11.1.5  Java Database Connectivity  (JDBC)

Java is an object-oriented programming language that runs on top of web browser software. When Java 
applications need to access data outside the Java run-time environment, they use predefined application 
programming interfaces.

Java Database Connectivity (JDBC)  -  an application programming interface that allows a Java program to 
interact  with  a  wide  range  of  data  sources,  including  relational  databases,  tabular  data  sources, 
spreadsheets, and text files. JBDC allows a Java program to establish a connection with a data source,  
prepare and sent the SQL code to the database server, and process the result. JDBC also provides a way to 
connect to databases through an ODBC driver.

11.2  Database Internet Connectivity

Characteristics of Internet technologies -

• Hardware and software independence;
• Common and simple user interface;
• Location independence;
• Rapid development at manageable costs.

 
The simplicity of the Webs' interface and its cross-platform functionality are at the core of its success as a  
data access platform.

11.2.1  Web-to-Database Middleware:  Server-side Extensions

In general the, the Web server is the main hub through which all Internet services are accessed. Dynamic 
Web pages are at the heart of current Websites, but neither Web browsers nor Web servers can handle  
dynamic requests, eg: database queries. Web servers capability must be extended so it can understand and 
process database requests.

Server-side extension  (Web-to-database middleware)  -  is a program that interacts directly with the Web 
server to handle specific types of requests. It provides its services to the Web server in a way that is totally 

Page  19  of  90



Chap 11  -  Interacting with Databases through the Web

transparent to the client browser. Server-side extension adds significant functionality to the Web server, and 
therefore to the Internet.

11.2.2  Web Server Interfaces

Extending Web server functionality implies that the Web server and the Web-to-database middleware will  
properly  communicate  with  each  other.  A Web  server  interface  defines  a  standard  way  to  exchange 
messages with external programs. There are two well defined Web server interfaces -

• Common Gateway Interface  (CGI);
• Application programming interface  (API),

Common Gateway Interface (CGI)  -  uses script files that perform specific functions based on the clients' 
parameters that are passed to the Web server.   Main disadvantage is that the script  file  is an external  
program that  executes  separately  for  each  user  request,  and  therefore  causes  a  resource  bottleneck. 
Performance can also be degraded by using an interpreted language, or an inefficient script.

Application programming interface (API)  -  is a newer Web server interface standard that is more efficient 
and faster than a CGI script. They are implemented as shared code or dynamic-link libraries (DLLs), which 
means that the API is treated as part of the web server program and dynamically invoked when  needed.

APIs are faster than CGI scripts because the code resides in memory,  and there is no need to run an 
external  program for  each request.  They can also use a shared connection to  the database instead of  
creating a new one each time.

Disadvantages - APIs share the same memory space as the Web server, so an API error can bring down the  
Web server. APIs are specific to the Web server and the operating system.

11.2.3  The Web Browser

Web Bowser is software such as Internet Explorer, Chrome, or Firefox that lets end users navigate the Web 
from their client computer. The Web Browsers job is to interpret the HTML code it receives from the Web 
server and to present the various page components in a standard formatted way.

11.2.4  Client-side Extensions

Client-side extensions  -  add functionality to the Web browser. Most common are -

Plug-in  -  an external application that is automatically invoked by the browser when needed. The plug-in is 
associated with a data object - generally using the file extension - to allow the Web server to handle data that  
are not originally supported.

JavaScript  -  is a scripting language that allows Web authors to design interactive sites. It is embedded in 
the Web page, and executed after a specific event.

ActiveX  -  specification for writing programs that run in Internet Explorer. Extends the Web browser by 
adding controls to Web pages. Has low portability, Windows specific.

VBScript  -  derived from Visual Basic. Scripting language similar to JavaScript.

11.2.5  Web Application Servers

Web application server  -  is a middleware application that expands the functionality of Web servers by 
linking them to a wide range of services such as databases, directory systems, and search engines.

Page  20  of  90



Chap 11  -  Interacting with Databases through the Web

Examples are: ColdFusion (Adobe), WebLogic Server (Oracle), Visual Studio .NET (Microsoft).

11.2.6  Web Database Development

Web database development deals with the process of interfacing databases with the Web browser - how to  
create Web pages that access data in a database.

Two examples - ColdFusion, and PHP.

11.3  Extensible markup language  (XML)

Extensible  Markup  Language (XML)   -   is  a  metalanguage  used  to  represent  and  manipulate  data 
elements. XML is designed to facilitate the exchange of structured documents, such as orders and invoices,  
over the internet. It is the data exchange standard for e-commerce applications.

Characteristics of XML -

• allows the definition of new tags to describe data elements;
• is case sensitive;
• must be well formed, tags must be properly formatted;
• must be properly nested;
• comments marked by <-- and --> symbols;
• XML prefix reserved for XML only.

XML is not a replacement for HTML. XML is concerned with the description and representation of the data, 
rather than the way the data is displayed.

11.3.1  Document Type Definitions (DTD) and XML Schemas

Document type definition (DTD)  -  is a file with a .dtd extension that describes XML elements. In effect a  
DTD file  provides the composition of  the databases' logical  model and defines the syntax rules or valid 
elements for each type of XML document. 

Companies that intend to engage in e-commerce transactions must develop and share DTDs. A DTD only 
provides descriptive information for understanding how the elements - root, parent, child etc - relate to one 
another, and limited additional semantic value such as data type support or data validation rules.

XML Schema  -  is an advanced data definition language that is used to describe the structure of XML data 
documents. This structure includes elements, data types, relationship types, ranges, and default values. One 
of  the main advantages of  an XML schema is  that  it  more  closely  maps to  database terminology and 
features.

11.3.2  XML Presentation

One of the main benefits of XML is that it separates data structure from its presentation and processing. By 
separating the two you can present the same data in different ways.

Extensible Style Language (XSL)  -  specification provides the mechanism to display XML data. Divided into 
two parts - 

• Extensible Style Language Transformations  (XSLT)  -  describes the general mechanism that is 
used to extract  and process data from one XML document and enable its transformation within 
another document;

Page  21  of  90



Chap 11  -  Interacting with Databases through the Web

• XSL style sheets  -  define the presentation rules applied to XML elements.

11.3.3  XML Applications

Uses of XML -

• B2B exchanges  -  enables the exchange of B2B data;

• Legacy  systems  integration   -   integrate  legacy  systems  data  with  modern  e-commerce  Web 
systems;

• Web page development  -  XML is a good fit for some types of Web development scenarios. Eg: Web 
portals with large amounts of data can use XML to pull data from multiple external sources;

• Database support  -  DBMS that supports XML can integrate with external systems such as the Web,  
mobile data, and legacy systems;

• Database metadictionaries  -  create vocabularies for entire industries;

• XML databases  -  most databases support XML to manage data in some shape or form;

• XML services  -  XML provides the infrastructure that helps heterogeneous systems work together.

11.4  Cloud Computing Services

Cloud computing  -  is "a computing model for enabling ubiquitous, convenient, on-demand network access 
to a shared pool of configurable computer resources (networks, servers, storage, applications etc) that can 
be rapidly provisioned and released with minimal management or service provider interaction".

Cloud services  -  refers to the services provided by cloud computing.

Cloud computing is important for database technologies because it has the potential to become a "game 
changer". Cloud computing eliminates financial  and technological  barriers so organizations can leverage 
database technologies in their  business process with minimal effort  and cost.  Instead of  spending large 
amounts of cash buying hardware and software, organizations can employ a pay-per-use model for their IT 
services.

11.4.1  Cloud Implementation Types

Different types of implementations -

• Public cloud  -  built by third-party organization to sell cloud services to the general public. Managed 
exclusively by the third-party provider;

• Private cloud  -  built by an organization for the sole purpose of servicing its own needs. Used by 
large  geographically  dispersed  organizations  to  add agility  and flexibility  to  internal  IT services. 
Managed by internal IT staff, or an external third-party;

• Community cloud  -  built by and for a specific group of organizations that share a common trade. 
Managed by internal IT staff, or by an external third-party.

Page  22  of  90



Chap 11  -  Interacting with Databases through the Web

11.4.2  Characteristics of Cloud Services

• Ubiquitous access via Internet technologies  -   Basic requirement that device has access to the 
Internet;

• Shared infrastructure  -  Cloud service infrastructure is shared by multiple users;

• Lower costs and variable pricing  -  Initial costs of using cloud services tend to be significantly lower  
than building on-premises IT infrastructure;

• Flexible and scalable services  -  Cloud services are built on an infrastructure that is highly scalable ,  
fault tolerant and very reliable. Services can scale up and down on demand;

• Dynamic provisioning  -  User can quickly provision any needed resources, by accessing the Web 
management dashboard and then adding or removing services on demand;

• Service orientation  -  Cloud computing focuses on providing consumers with specific, well-defined 
services that use well-known interfaces. Hide the complexity from the end user, and can be delivered 
anytime anywhere;

• Managed operations  -  The system infrastructure is managed by the cloud provider, minimizes the 
need for extensive and expensive in-house IT staff.

11.4.3  Types of Cloud Services

• Software as a Service (SaaS)  -  The cloud service provider offers turnkey applications that run in  
the cloud. Application shared among users from multiple organizations. Eg: MS Office Live, Google 
Docs;

• Platform as a Service (PaaS)  -  The cloud service provider offers the capability to build and deploy 
consumer-created  applications  using  the  providers'  cloud  infrastructure.  Eg:  Microsoft  Azure 
platform, Google Application Engine;

• Infrastructure as a Service (IaaS)  -  The cloud service provider offers consumers the ability to 
provision  their  own resources  on  demand.  These  include  storage,  servers,  databases etc.  The 
consumer can add or remove the resources as needed.

11.4.4  Cloud Services:  Advantages and Disadvantages

ADVANTAGE DISADVANTAGE

Low initial cost of entry  -  compared to alternative 
of building in-house.

Issues of security, privacy and compliance  -  
Trusting sensitive company data to external entities.

Scalability / elasticity - Easy to add and remove 
resources on demand.

Hidden costs of implementation and operation   -  
Hard to estimate bandwidth & data migration costs.

Support for mobile computing  -  Support multiple 
types of mobile computing devices.

Data migration difficult and lengthy process  -  
Migrating large amounts of data can be difficult and 
time consuming.

Ubiquitous access  -  Can access the cloud 
resources from anywhere at any time.

Complex licensing schemes  -  Complicated 
licensing and service-level agreements.

High reliability and performance  -  Solid 
infrastructures.

Loss of ownership and control  -  No longer in 
complete control of data.

Page  23  of  90



Chap 11  -  Interacting with Databases through the Web

Fast provisioning  -  Resources can be provisioned 
on demand in a matter of minutes.

Organization culture  -  End users tend to be 
resistant to change.

Managed infrastructure  -  Managed by dedicated 
staff,  allows  organizations  staff  to  focus  on  other 
areas.

Difficult  integration  with  internal  IT  system  - 
Configuring  the  cloud  services  to  integrate 
transparently with internal services could be difficult.

11.4.5  SQL Data Services

Databases remain at the centre of all system development. Cloud computing brings a new dimension to data 
management, which is within reach of any type of organization.

SQL data services (SDS)  -  refers to a cloud computing-based data management service that provides 
relational data storage, access, and management to companies of all sizes without the typically high costs of  
in-house hardware, software, infrastructure, and personnel.

Advantages of SQL data services -

• Highly reliable and scalable relational database for a fraction of the cost;

• High level of failure tolerance;

• Dynamic and automatic load balancing;

• Automated data backup and disaster recovery included with the service;

• Dynamic creation and allocation of database processes and storage.

Page  24  of  90



Chap 11  -  Interacting with Databases through the Web

Key  Terms

• ActiveX  -  Microsofts' alternative to Java. A specification for writing programs that will run inside the 
Microsoft client browser, Internet Explorer. Oriented mainly to Windows applications, it is not portable. 
It adds controls such as dropdown windows and calendars to Web pages.

• ActiveX Data Objects (ADO)  -  A Microsoft object framework that provides a high-level, application-
oriented interface to OLE-DB, DAO, and RDO.  ADO provides a unified interface to access data from 
any programming language that uses the underlying OLE-DB objects.

• application programming interface  (API)   -   Software through which  programmers interact  with 
middleware.  An API allows the use of  generic  SQL code, thereby allowing client  processes to be 
database server-independent. 

• Call Level Interface (CLI)  -  A standard developed by the SQL Access Group for database access.

• client-side extensions  -  Extensions that add functionality to a Web browser. The most common 
extensions are plug-ins, Java, JavaScript, ActiveX, and VBScript.

• cloud computing  -  A computing model that provides ubiquitous, on-demand access to a shared pool 
of configurable resources that can be rapidly provisioned.

• cloud services  -  The services provided by cloud computing. Cloud services allow any organization to 
quickly and economically add information technology services such as applications, storage, servers, 
processing power, databases, and infrastructure.

• Common Gateway Interface (CGI)  -  A Web server interface standard that uses script files to perform 
specific functions based on a clients' parameters.

• community cloud  -  A type of cloud built by and for a specific group of organizations that share a 
common trade, such as agencies of the federal government, the military, or higher education.

• Data Access Objects (DAO)  -  An object-oriented application programming interface used to access 
MS  Access,  MS  FoxPro,  and  dBase  databases  from  Visual  Basic  programs.  DAO  provides  an 
optimized programming interface that exposes the functionality of the Jet data engine, on which MS 
Access is  based. The DAO interface can be used to access other relational-style data sources.

• data source name (DSN)  -  A name that identifies and defines an OBDC data source.

• database middleware  -  Database connectivity software through which application programs connect 
and communicate with data repositories.

• DataSet  -   In  ADO.NET,  a  disconnected,  memory-resident  representation  of  the  database.  The 
DataSet contains tables, columns, rows, relationships, and constraints.

• document type definition (DTD)  -  A file with a .dtd extension that describes XML elements; in effect,  
a DTD file describes a documents' composition and defines the syntax rules or valid tags for each type 
of XML document.

• dynamic-link libraries  (DLL's)  -   Shared code modules that  are  treated as part  of  the operating 
system or server process so they can be dynamically invoked at run time.

• Extensible Markup Language  (XML)  -  A metalanguage used to represent and manipulate data 
elements.  Unlike  other  markup  languages,  XML permits  the  manipulation  of  a  documents'  data 
elements. XML facilitates the exchange of structured documents such as orders and invoices over the 
internet.

Page  25  of  90



Chap 11  -  Interacting with Databases through the Web

• Infrastructure as a Service (IaaS)  -  A model in which the cloud service provider offers consumers 
the ability to provision their own resources on demand;  these resources include storage, servers,  
databases, processing units, and even a complete virtualized desktop.

• Java  -  An object-oriented programming language developed by Sun Microsystems that runs on top of  
the Web browser software. Java applications are compiled and stored on the Web server. Javas' main 
advantage is its ability to let application developers create their applications once and then run them in 
many environments.

• Java Database Connectivity  (JDBC) -   An application programming interface that  allows a Java 
program to interact with a wide range of data sources, including relational databases, tabular data 
sources, spreadsheets, and text files.

• JavaScript  -   A scripting  language developed by  NetScape that  allows  Web authors  to  design 
interactive Websites. JavaScript code is embedded in Web pages, and then downloaded with the page 
and activated when a specific event takes place, such as a mouse click on an object.

• Microsoft  .NET framework   -   A component-based  platform  for  the  development  of  distributed, 
heterogeneous, interoperable applications aimed at manipulating any type of data over any network 
regardless of operating system and programming language.

• Object Linking and Embedding for Database (OLE-DB)  -  Based on MicroSofts' Component Object 
Model (COM), OLE-DB is database middleware that adds object-oriented functionality for accessing 
relational and non-relational data. OLE-DB was the first part of MicroSofts' strategy to provide a unified  
object-oriented framework for the development of next-generation applications.

• Open Database Connectivity (ODBC)  -  Database middleware developed by MicroSoft to provide a 
database access API to Windows applications.

• Platform as a Service (PaaS)  -  A model in which the cloud service provider can build and deploy 
consumer-created applications using the providers' cloud infrastructure.

• plug-in  -  In the World Wide Web (WWW), a client-side external application that is automatically 
invoked by the browser when needed to manage specific type of data.

• private cloud  -  A form of cloud computing in which an internal cloud is built by an organization to 
serve its own needs.

• public  cloud  -   A form  of  computing  in  which  the  cloud  infrastructure  is  built  by  a  third-party 
organization to sell cloud services to the general public.

• Remote Data Objects  (RDO)  -  A high-level,  object-oriented application interface used to access 
remote database servers. RDO uses the lower-level DAO and ODBC for direct access to databases.  
RDO was optimized to deal with server-based databases such as MS SQL Server, Oracle, and DB2.

• script  -  A programming language that is not compiled, but is interpreted and executed at run time.

• server-side extension  -  A program that interacts directly with the server process to handle specific 
types of requests. Server-side extensions add significant functionality to Web servers and intranets.

• Software  as  a  Service  (SaaS)   -   A model  in  which  the  cloud  service  provider  offers  turnkey 
applications that run in the cloud.

• SQL data services (SDS)  -  Data management services that provide relational data storage, access, 
and management over the internet.

• stateless  system  -   A system in  which  a  Web server  does  not  know the  status  of  the  clients 

Page  26  of  90



Chap 11  -  Interacting with Databases through the Web

communicating with it. The Web does not reserve memory to maintain an open communication state 
between the client and the server.

• tags  -  In markup languages such as HTML and XML, a command inserted in a document to specify 
how  the  document  should  be  formatted.  Tags  are  used  in  server-side  markup  languages  and 
interpreted by a Web browser for presenting data.

• Universal  Data  Access  (UDA)   -   Within  the  Microsoft  application  framework,  a  collection  of 
technologies  used  to  access  any  type  of  data  source  and  manage  the  data  through  a  common 
interface.

• VBScript  -   A client-side extension  in  the form of  a  Microsoft  product  that  extends a browsers' 
functionality;  VBScript is derived from Visual Basic.

• Web application server  -  A middleware application that expands the functionality of web servers by 
linking them to a wide range of services, such as databases, directory systems, and search engines.

• Web-to-database middleware  -  A database server-side extension that retrieves data from databases 
and passes them to the Web server, which in turn sends the data to the clients' browser for display.

• XML schema  -  An advanced data definition language used to describe the elements, data types, 
relationship types, ranges, and default values of XML data documents. One of the main advantages of  
an XML schema is that it more closely maps to database terminology and features.

• XML schema definition (XSD)  -  A file that contains the description of an XML document.

--ooOoo--

Page  27  of  90



Chapter 12  -  Database Administration and Security

Chapter 12  -  Database Administration and Security

Summary

• Data management is a critical activity for any organization, so data must be treated as a corporate 

asset. The value of a data set is measured by the utility of the information derived from it. Good data 

management is likely to produce good information, which is the basis for better decision making.

• Data quality is a comprehensive approach to ensure the accuracy, validity, and timeliness of data. Data 

quality focuses on correcting dirty data, preventing future inaccuracies in the data, and building user  

confidence in the data.

• The DBMS is the most commonly used tool for corporate data management. The DBMS supports 

strategic, tactical, and operational decision making at all levels of the organization. The introduction of 

a  DBMS  into  an  organization  is  a  delicate  job;  the  impact  of  the  DBMS  on  the  organizations' 

managerial and cultural framework must be carefully examined.

• The database administrator (DBA) is responsible for managing the corporate database. The internal 

organization  of  database  administration  varies  from company  to  company.  Although  no  standard 

exists, it is common practice to divide DBA operations according to phases of the Database Life Cycle.  

Some companies have created a position with a broader mandate to manage computerized data and 

other data; this activity is handled by the data administrator (DA).

• The DA and DBA functions tend to overlap. Generally speaking, the DA has more managerial tasks 

than the more technically oriented DBA. Compared to the DBA function, the DA function is DBMS-

independent, with a broader and longer-term focus. However, when the organization does not include 

a DA position, the DBA executes all of the DAs' functions. In this combined role, the DBA must have a  

diverse mix of technical and managerial skills.

• A DBAs' managerial services include supporting end users; defining and enforcing policies, procedures 

and standards for the database; ensuring data security, privacy, and integrity; providing data backup 

and recovery services; and monitoring distribution and use of the data in the database.

• The DBAs' technical role includes involvement in at least the following activities:  evaluating, selecting, 

and installing the DBMS;  designing and implementing databases and applications;    testing and 

evaluating  databases  and  applications;  operating  and  maintaining  the  DBMS,  utilities,  and 

applications;  and training and supporting users.

• Security refers to activities and measures that ensure the confidentiality, integrity, and availability of an 

information system and its main asset, data. A security policy is a collection of standards, policies, and  

practices that guarantee the security of a system and ensure auditing and compliance.

Page  28  of  90



Chapter 12  -  Database Administration and Security

• A security  vulnerability  is  a  weakness  in  a  system  component  that  could  be  exploited  to  allow 

unauthorized access or service disruption. A security threat is an imminent security violation caused by 

an unchecked vulnerability. Security vulnerabilities exist in all components of an information system: 

people,  hardware,  software,  network,  procedures,  and data.  Therefore,  it  is  critical  to have robust 

database security. Database security refers to DBMS features and related measures that comply with 

the organizations' security requirements.

• The development of a data administration strategy is closely related to the companys' mission and 

objectives. Therefore, the strategic plan requires a detailed analysis of company goals, its situation,  

and its business needs.  To guide the development of  this data administration plan,  an integrating 

methodology is required. The most commonly used integrating methodology is known as information 

engineering (IE).

• To help translate strategic plans into operational plans, the DBA has access to an arsenal of database  

administration  tools,  including  a  data  dictionary  and  computer-aided  systems engineering  (CASE) 

tools.

Page  29  of  90



Chapter 12  -  Database Administration and Security

Content
12.1  Data as a Corporate Asset

Data are the raw material from which information is produced, and a valuable resource. If the information is 
accurate and timely, it can enhance the companys' competitive position and generate wealth. Data form the 
basis for decision making, strategic planning, control, and operations monitoring.

Efficient asset management is critical to the success of an organization. To manage data as a corporate 
asset, managers must understand the value of information. As organizations become more dependent on 
information, its accuracy becomes more critical.

Dirty data  -  data that suffers from inaccuracies and inconsistencies.

Data can become dirty for several reasons -

• Lack of enforcement of integrity constraints, such as not null, uniqueness, and referential integrity;
• Data-entry errors and typographical errors;
• Use of synonyms and homonyms across systems;
• Non-standard use of abbreviations in character data;
• Different decompositions of composite attributes into simple attributes across systems.

Data quality  -  is a comprehensive  approach to ensuring the accuracy, validity, and timeliness of data. This 
comprehensive approach is important, because data quality involves more than just cleaning dirty data; it  
also focuses on preventing future inaccuracies and building user confidence in the data.

Data quality efforts involve the following -

• A data governance structure that is responsible for data quality;
• Measurements of current data quality;
• Definition of data quality standards in alignment with business goals;
• Implementation of tools and processes to ensure future data quality.

A number  of  tools  can  assist  in  data  quality  initiatives  -  Eg:  Data-profiling  software,  and  Master  data 
management software. While these tools provide an important part of data quality, the overall solution to  
high-quality data within an organization still relies heavily on data administration and management.

12.2  The Need for a Database and its Role in an Organization

Regardless of  the organization,  the predominant role of  the database is to support  managerial  decision 
making at all levels  in the organization, while preserving data privacy and security.

The DBMS must give each level of management a useful view of the data and support the required level of  
decision making. Typical activities of each management level -

• Top management level (Strategic decisions)  - 

◦ Provide  the  information  necessary  for  strategic  decision  making,  strategic  planning,  policy 
formulation, and goals definition.

◦ Provide access to external and internal data to identify growth opportunities and to chart the 
direction of such growth.

◦ Provide a framework for defining and enforcing organizational policies that are translated into 
business rules at lower levels in the organization.

Page  30  of  90



Chapter 12  -  Database Administration and Security

◦ Improve the likelihood of a positive return on investment by searching for new ways to reduce  
costs and boost productivity in the company.

◦ Provide feedback to monitor whether the company is achieving its goals.

• Middle management level (Tactical decisions)  -  

◦ Deliver the data necessary for tactical decisions and planning.

◦ Monitor and control the allocation and use of company resources and evaluate the performance 
of various departments.

◦ Provide a framework for  enforcing and ensuring the security  and privacy of  the data in the 
database.

• Operational management level (Daily working decisions)  -  

◦ Represent and support company operations as closely as possible.

◦ Produce query results within specified performance levels.

◦ Enhance  the  companys'  short-term  operations  by  providing  timely  information  for  customer 
support and for application development and computer operations.

12.3  Introduction of a Database:  Special Considerations

The introduction of a DBMS is a process that includes three important aspects  - 

• Technological (DBMS software and hardware)   -   includes selecting,  installing configuring,  and 
monitoring  the  DBMS.  Database  administration  staffing  is  a  key  technological  consideration,  
personnel must have appropriate technical and managerial skills.

• Managerial (Administrative  functions)   -   must  create  an appropriate  organizational  structure to 
accommodate the personnel responsible for administering the system. 

• Cultural (Corporate resistance to change)  -   The DBMS is likely to have an effect  on people, 
functions, and interactions. 

12.4  The Evolution of Database Administration

Database Administrator (DBA)  -  Person responsible for control of the centralized and shared database.

DBA operations are commonly defined and divided according to the phases of  the Database Life Cycle 
(DBLC). Requires personnel to cover following activities  -  

• Database planning, including definition of standards, procedures, and enforcement;
• Database requirements gathering and conceptual design;
• Database logical and transaction design;
• Database physical design and implementation;
• Database testing and debugging;
• Database operations and maintenance, including installation, conversion, and migration;
• Database training and support;
• Data quality monitoring and management.

Page  31  of  90



Chapter 12  -  Database Administration and Security

Data administrator  (DA)  (Information resource manager IRM)  -  Growing trend toward specialization in 
data management. Distinction between DBA and DA. The DA reports directly to top management, with a 
higher degree of responsibility and authority than the DBA. Responsible for controlling the overall corporate 
data sources, both computerized and manual.

12.5  The Database Environments' Human Component

The DBA must perform two distinct roles - 

• Managerial role  -  focused on personnel management and on interactions with end users.

• Technical role  -  involves the use of the DBMS - database design, development, and implementation  
- as well as the production, development, and use of application programs.

12.5.1  The DBAs' Managerial Role

As a manager, the DBA must concentrate on the control and planning of database administration. Therefore 
the DBA is responsible for -

• End-User Support  -  Support services include the following -

◦ Gathering user requirements    -  Must work with end users to help gather data required to identify 
and describe their present and future information needs. Varying computer backgrounds and 
communication styles.

◦ Building end-user confidence    -  Educate end users about the services provided.

◦ Resolving conflicts  and problems    -   DBA must  have authority  and responsibility  to  resolve 
conflicts with regard to data requirements.

◦ Finding solutions to information needs    -  Need to develop solutions that will properly fit within 
the data management framework and address end users information needs.

◦ Ensuring quality and integrity of data and applications    -  Once solution has been found, it must 
be properly implemented.  Must  teach application programmers and end users the database 
standards and procedures required for data quality, access, and manipulation.

◦ Managing the training and support of DBMS users    -  One of the most time consuming activities 
is teaching end users how to use the database.

• Policies, Procedures, and Standards  -  A successful data administration strategy requires the 
continuous enforcement of policies, procedures, and standards for correct data creation, usage, and 
distribution within the database.

◦ Policies  -  general statements of direction or action that communicate and support DBA goals.

▪ Examples  -  

• all users must have passwords;
• passwords must be changed every six months.

◦ Standards  -   describe  the  minimum requirements  of  a  given  DBA activity;  they  are  more 
detailed and specific than policies. They are rules that evaluate the quality of an activity. 

Page  32  of  90



Chapter 12  -  Database Administration and Security

▪ Examples  -  

• A password must have a minimum of five characters;
• A password must have a maximum of 12 characters;
• ID numbers, names, birth dates cannot be used in passwords.

◦ Procedures  -  are written instructions that describe a series of steps to be followed during the 
performance of a given activity. Must define, communicate, and enforce procedures that cover -

▪ End-user data requirements gathering;

▪ Database design and modelling;

▪ Documentation and naming conventions;

▪ Design, coding, and testing of database application programs;

▪ Database software selection;

▪ Database security and integrity;

▪ Database backup and recovery;

▪ Database maintenance and operation;

▪ End-user training.

• Data Security, Privacy, and Integrity  -  The distribution  of data across multiple sites has made it 
more  difficult  to  maintain  database  control,  security,  and  integrity.  The  DBA must  enforce  the 
database administration policies defined for the organization.

• Data Backup and Recovery  -  Data backup and recovery procedures are critical in all database 
installations. The DBA must ensure that data can be fully recovered in case of data loss, or loss of 
database integrity. 

◦ Database Security Officer  -  sole job is to ensure database security and integrity. Also referred 
to as Disaster Management.

◦ Disaster Management  -  includes all of the DBA activities designed to secure data availability 
following a physical disaster or a database integrity failure. Includes all planning, organizing, and 
testing  of  database  contingency  plans  and  recovery  procedures.  Backup  and  recovery 
procedures must include at least the following -

▪ Periodic data and application backups    -  Different types of backup  -  

• Full backup (Database dump)  -  complete copy of the entire database;
• Incremental backup  -  backup of all data since the last backup date;
• Concurrent backup  -  takes place while the user is working on the database.

▪ Proper  backup  identification    -   Backups  must  be  clearly  identified  through  detailed 
descriptions and date information, to ensure that the correct backups are used to recover the 
database.

Page  33  of  90



Chapter 12  -  Database Administration and Security

▪ Convenient and safe backup storage    -  Multiple backups of the same data are required, and 
each backup copy must be stored in a different location.

▪ Physical protection of both hardware and software    -  Protection might include the use of 
closed installations with restricted access, as well as preparation of the computer sites to 
provide air conditioning, backup power, and fire protection.

▪ Personal access control to the software of a database installation    -  Multilevel passwords 
and privileges.

▪ Insurance coverage for the data in the database    -  Should have insurance cover to provide 
financial protection in the event of a database failure.

• Data Distribution and Use  -  Data are only useful when they reach the right users at the right time, 
and in the right format.

12.5.2  The DBAs' Technical Role

The DBAs technical role requires a broad understanding of DBMS functions, configuration, programming 
languages, and data-modeling and design methodologies.

• Evaluating,  Selecting,  and  Installing  the  DBMS  and  Utilities  -   Most  important  technical 
responsibility  is  selecting  the  database  management  system,  utility  software,  and  supporting 
hardware. Checklist of desired DBMS features - 

◦ DBMS model    -  relational , object-oriented, object / relational ?

◦ DBMS storage capacity    -  maximum storage and database sizes ?

◦ Application development support    -  Programming languages, application development tools ?

◦ Security and integrity    -  Referential and entity integrity rules, access rights supported ?

◦ Backup and recovery    -  Automated backup and recovery tools ?

◦ Concurrency control    -  Multiple users supported ?

◦ Performance    -  How many transactions per second  does the DBMS support ?

◦ Database administration tools    -  Does the DBMS offer DBA management interface ?

◦ Inteoperability and data distribution    -  Can the DBMS work with other DBMS types ?

◦ Portability and standards    -  Can the DBMS run on different operating systems and platforms ?

◦ Hardware    -  What hardware does the DBMS require ?

◦ Data dictionary    -  Does the DBMS have a data dictionary ?

◦ Vendor training and support    -  What support does vendor offer ?  Documentation ?

◦ Available third party tools    -  offered by third party vendors ?

◦ Costs    -  What are costs of hardware and software ?  Staff costs ?

Page  34  of  90



Chapter 12  -  Database Administration and Security

• Designing and Implementing Databases and Applications  -  DBA also provides data-modeling 
and design services to end users. Must ensure that standards and procedures are adhered to. 

• Testing and Evaluating Databases and  Applications  -   DBA must  also  provide  testing  and 
evaluation  services  for  all  database  and  end-user  applications.  Evaluation  process  covers  the 
following -

◦ Technical aspects of both the applications and the database; backup and recovery, security and 
integrity, use of SQL, and application performance.

◦ Evaluation of written documentation and procedures.

◦ Observance of standards for naming, documenting, and coding.

◦ Checking for data duplication conflicts with existing data.

◦ The enforcement of all data validation rules.

• Operating the DBMS, Utilities, and Applications  -  DBMS operations can be divided into four 
main areas  -  

◦ System Support    -  all tasks directly related to the day-to-day operations of the DBMS, including 
filling out job logs, changing tape, and verifying the status of hardware and emergency power 
sources.

◦ Performance monitoring and tuning    -  are very time-consuming. Must ensure that the DBMS, 
utilities, and applications maintain satisfactory performance levels. The DBA must -

▪ Establish DBMS performance goals;

▪ Monitor the DBMS to evaluate whether the performance objectives are being met;

▪ Isolate the problem and find solutions if performance objectives are not met;

▪ Implement the selected performance solutions.

◦ Backup and recovery    -  activities are of primary concern because data loss could be devastating 
to an organization. The DBA must establish a schedule for backing up database and log files at  
appropriate intervals, and must plan, implement, test and enforce backup recovery procedures.

◦ Security auditing and monitoring    -  involves creating users, assigning access rights, and using 
SQL commands to grant and revoke access rights to users and database objects. DBA must 
also monitor actual or attempted security violations, and take remedial action.

• Training and Supporting Users  -  Training users and application programmers to use the DBMS 
and its tools and utilities are part of the DBAs technical activities. This includes the procedures and 
standards required for database programming.

• Maintaining the DBMS, Utilities, and Applications  -  Maintenance activities are dedicated to the 
preservation  of  the  DBMS  environment.  One  of  the  most  common  maintenance  activities  is 
reorganizing the physical location of data in the database. Also includes upgrading the DBMS and 
utility software.

Page  35  of  90



Chapter 12  -  Database Administration and Security

12.5.3  The DBAs' Role in the Cloud

The use of cloud-based data services has a significant impact on the role of the DBA, with a reduced role in  
installing and maintaining the DBMS. The DBAs technical role is still  critical to the organization, and the 
managerial role is largely unchanged.

12.6  Security

Security  -  refers to activities and measures that ensure the confidentiality, integrity, and availability of an 
information system, and its main asset, data. Must secure all the processes and systems around the data, 
including hardware systems, software applications, the network and its devices, internal and external users, 
procedures, and the data itself.

• Confidentiality  -  deals with ensuring that data are protected against unauthorized access, and if 
the data is accessed by an authorized user, that the data are used only for an authorized purpose. 
Data must be evaluated and classified according to the level of confidentiality: highly restricted (very 
few people have access), confidential (only certain groups have access), and unrestricted (can be 
accessed by all users).

• Integrity  -  is concerned with keeping data consistent and free of errors or anomalies. Data should 
be treated as the most valuable asset in an organization and rigorous data validation carried out at 
all levels.

• Availability  -  refers to the accessibility of data whenever required by an authorized user, and for 
authorized purposes. To ensure data availability, the entire system must be protected from service 
degradation  or  interruption  caused by any internal  or  external  source.  System availability  is  an 
important goal of security. 

12.6.1  Security Policies

Security Policy  -  is a collection of standards, policies, and procedures created to guarantee the security of  
a system and ensure auditing compliance. 

12.6.2  Security Vulnerabilities

Security  vulnerability  -   is  a  weakness  in  a  system  component  that  could  be  exploited  to  allow 
unauthorized access, or cause service disruptions. Categories  -

• Technical  -  A flaw in the operating system or browser;

• Managerial  -  An organization may not educate users about security issues;

• Cultural  -  Users write down passwords, or do not shred confidential documents;

• Procedural  -  Company procedures may not require secure passwords, or checking of user IDs.

Security threat  -  is an imminent security violation. If a security vulnerability is left unresolved, it could 
become a security threat.

Security breach  -  occurs when a security threat is exploited to endanger the integrity, confidentiality, or 
availability of the system. Can lead to a database with integrity either preserved, or corrupted  -

Page  36  of  90



Chapter 12  -  Database Administration and Security

• Preserved    -  Action required to avoid similar recurrence, but data recovery not required.

• Corrupted    -  Action required to avoid similar recurrence, and the database must be recovered to a 
consistent state. Include database access by computer viruses, or by hackers destroying or altering 
data.

12.6.3  Database Security

Database  security  -   refers  to  DBMS  features  and  other  related  measures  that  comply  with  the 
organizations' security requirements. Recommended security safeguards  -  

• Change default system passwords;

• Change default installation paths;

• Apply the latest patches;

• Secure installation folders with proper access rights;

• Make sure that only required services are running;

• Set up auditing logs;

• Set up session logging;

• Require session encryption.

Authorization management  -  defines procedures to protect and guarantee database security and integrity. 
These procedures include  -  

• User access management    -  designed to limit access to the database  -  

◦ Define each user to the database  -  Create a unique user ID for each user;

◦ Assign passwords to each user  -  Can be defined with predetermined expiration dates;

◦ Define user groups  -   according to common access needs, can help control  and manage 
access privileges of individual users;

◦ Assign access privileges  -  grant access to specific databases, may be limited to read-only, or 
may include read, write, and delete privileges;

◦ Control physical  access  -   physical security can prevent unauthorised users from directly 
accessing the DBMS installation and facilities.

• View definition    -  define data views to protect and control the scope of the data that are accessible 
to authorised users.

• DBMS access control    -  Access can be controlled by placing limits on the use of DBMS query and 
reporting tools.

• DBMS usage monitoring    -  DBA must audit the use of data in the database. Create an audit log.

Page  37  of  90



Chapter 12  -  Database Administration and Security

12.7  The Database Administration Tools

12.7.1  The Data Dictionary

Data dictionary  -  A DBMS component that stores the definition of data characteristics and relationships.  
(Metadata - data about data). The data dictionaries main function is to store the description of all objects that  
interact with the database. Two types of data dictionaries  -  

• Integrated  -  included with the DBMS. All relational DBMSs include  a built-in data dictionary.

• Standalone  -  Other, older DBMSs, do not have a built-in data dictionary, may use a standalone 
third party system.

Can also be classified as active or passive  - 

• Active data dictionary  -  is automatically updated by the DBMS with every database access to 
keep its access information up to date.

• Passive data dictionary  -   is  not  updated automatically,  and usually requires running a batch 
process.

There is no standard, but a data dictionary typically stores descriptions of the following  -  

• Data elements that are defined in all tables of all databases;

• Tables defined in all databases;

• Indexes defined for each database table;

• Defined databases;

• End users and administrators of the database;

• Programs that access the database;

• Access authorizations for all users of all databases;

• Relationships among data elements.

12.7.2  Case Tools

Computer-aided systems engineering   (CASE)  -   tool that  provides an automated framework for the 
Systems Development Life Cycle (SDLC). Classified according to the extent of support they provide for the 
SDLC  -  

• Front-end CASE tools  -  provide support for the planning, analysis, and design phases;

• Back-end CASE tools  -  provide support for the coding and implementation phases.

The benefits of CASE tools include  -  

• A reduction in development time and costs;

Page  38  of  90



Chapter 12  -  Database Administration and Security

• Automation of the SDLC;

• Standardization of system development methodologies;

• Easier maintenance of application systems developed with CASE tools.

Typical CASE tool provides five components  -  

• Graphics designed to produce diagrams such as data flow diagrams, ER diagrams, class diagrams;

• Screen painters and report generators to produce the information systems input and output formats;

• An  integrated  repository  for  storing  and  cross-referencing  the  system  design  data;  includes  a 
comprehensive data dictionary;

• An  analysis  segment  to  provide  a  fully  automated  check  on  system  consistency,  syntax,  and 
completeness;

• A program document generator.

12.8  Developing a Data Administration Strategy

Several  methodologies  are  available  to  ensure  the  compatibility  of  data  administration  and  information 
system plans, and to guide strategic plan development. Most commonly used is information engineering.

Information engineering (IE)  -  allows for translation of the companys' strategic goals into the data and 
applications that  will  help  the company achieve those goals.  IE focuses on the description of  common 
corporate data instead of the process. Business data types tend to remain stable, but processes change  
often, and so require frequent modification of existing systems. By placing the emphasis on data, IE helps  
decrease the impact on systems when processes change.

Information systems architecture (ISA)  -   is  the output  of  the IE process.  It  serves as the basis for 
planning, development, and the control of future information systems. An ISA provides a framework that 
includes computerized, automated, and integrated tools such as a DBMS and CASE tools.

12.9  The DBA at Work:  Using Oracle for Database  Administration

The DBA needs to handle the following technical tasks in a specific DBMS  -

• Creating and expanding database storage structures;

• Managing database objects such as tables, indexes, triggers, and procedures;

• Managing the end-user database environment, including the type and extent of database access;

• Customizing database initialization parameters.

12.9.1  Oracle Database Administration Tools

Page  39  of  90



Chapter 12  -  Database Administration and Security

In Oracle most DBA tasks are performed via the Oracle Enterprise Manager interface.

12.9.2  The Default Login

To perform any administrative task, you must connect to the database using a username with administrative 
privileges.

12.9.3  Ensuring that the RDBMS Starts Automatically

Basic task to ensure that database access starts automatically when computer is turned on.

Service  -  Windows name for a special program that runs automatically as part of the operating system.

12.9.4  Creating Tablespaces and Datafiles

Tablespace  -  is a logical storage space. A database is logically composed of one or more tablespaces.

Datafile  -  physically stores the databases' data. Each datafile is associated with only one tablespace,  
although it can reside in different directories or disks.

12.9.5  Managing the Database Objects:  Tables, Views, Triggers, and Procedures

Important aspect of managing a database is monitoring the objects that are created in the database.

Database object  -   any object  created by end-users -  tables,  views,  indexes,  stored procedures,  and 
triggers.

12.9.6  Managing Users and Establishing Security

One of the most common database administration activities is creating and managing database users.

12.9.7  Customizing the Database Initialization Parameters

Fine-tuning a database is another important DBA task that usually requires the modification of database 
configuration parameters. Some can be can be changed in real-time using SQL commands, others require 
the database to be shutdown and restarted.

One of the important functions of the initialization parameters is to reserve the resources that the database  
uses at run time. Eg: primary memory used for database caching.

Page  40  of  90



Chapter 12  -  Database Administration and Security

Key  Terms

• access plan  -  A set of instructions generated at application compilation time that is created and 
managed by a DBMS. The access plan predetermines how an applications' query will  access the 
database at run time.

• active  data  dictionary  -   A  data  dictionary  that  is  automatically  updated  by  the  database 
management system every time the database is accessed, thereby keeping its information current. 
See also data dictionary.

• audit log  -  A security feature of a database management system that automatically records a brief 
description of the database operations performed by all users.

• authorization management  -  Procedures that protect and guarantee database security and integrity. 
Such procedures include user access management, view definition, DBMS access control, and DBMS 
usage monitoring.

• availability  -   refers  to  the accessibility  of  data  whenever  required by authorized users  and for  
authorized purposes. Important goal of security.

• back-end CASE tools   -  A computer-aided software tool that provides support for the coding and 
implementation phases of the SDLC. In comparison, front-end CASE tools provide support for the 
planning, analysis, and design phases.

• CASE  (computer-aided systems engineering)  -  Tools used to automate part or all of the Systems 
Development Life Cycle.

• compliance  -  refers to activities that meet data privacy and security reporting guidelines.

• concurrent backup  -  A backup that takes place while one or more users are working on a database.

• confidentiality  -  deals with ensuring that data are protected against unauthorized access, and if the 
data are accessed by an authorised user, that the data are used only for an authorised purpose.

• data administrator  (DA)  -   The person responsible  for  managing the entire  database resource, 
whether it is computerized or not. The DA has broader authority and responsibility than the database  
administrator (DBA). Also known as an information resource manager (IRM).

• data-profiling software  -  Programs that analyze data and metadata to determine patterns that can 
help assess data quality.

• data quality  -  A comprehensive approach to ensuring the accuracy, validity, and timeliness of data.

• database administrator  (DBA)  -  The person responsible for planning, organizing, controlling, and 
monitoring the centralized and shared corporate database. The DBA is the general manager of the 
database administration department.

• database dump  -  See full backup.

• database instance (Oracle)  -  In an Oracle DBMS, the collection of processes and data structures 
used to manage a specific database.

• database object (Oracle)  -  Any object in a database, such as a table, view, index, stored procedure, 
or trigger.

• database security  -  The use of DBMS features and other related measures to comply with the 
security requirements of an organization.

Page  41  of  90



Chapter 12  -  Database Administration and Security

• database security officer  (DSO)  -  The person responsible for the security, integrity, backup, and 
recovery of the database.

• datafile (Oracle)  -  A named physical storage space that stores a databases' data. It can reside in a  
different directory on a hard disk, or on one or more hard disks. All data in a database are stored in 
data files. A typical enterprise database is normally composed of several data files. A data file can 
contain rows from one or more tables.

• disaster management  -  The set of DBA activities dedicated to securing data availability following a 
physical disaster or a database integrity failure.

• enterprise database  -  The overall company data representation, which provides support for present 
and expected future needs.

• front-end CASE tools  -   A computer-aided software tool  that  provides support  for the planning, 
analysis, and design phases of the SDLC. In comparison, back-end CASE tools provide support for 
the coding and implementation phases.

• full  backup  (database  dump)   -   A complete  copy of  an entire  database  saved  and  periodically 
updated in a separate memory location. A full backup ensures a full recovery of all data after a physical  
disaster or database integrity failure.

• incremental backup  -  A process that only backs up data that has changed in the database since the 
last incremental or full backup.

• information engineering  (IE)   -   A methodology that  translates a companys'  strategic  goals  into 
helpful data and applications. IE focuses on the description of corporate data instead of the process.

• information resource dictionary  -  See data dictionary.

• information resource manager (IRM)  -  See data administrator (DA).

• information systems architecture  (ISA)  -  The output of the information engineering (IE) process 
that serves as the basis for planning, developing, and controlling future information systems.

• information systems (IS) department  -  An evolution of the data-processing department in which 
responsibilities are broadened to include service and production functions.

• integrity  -   In a data security framework,  refers to keeping data consistent and free of  errors or  
anomalies. See also data integrity.

• master data management  (MDM) software  -   In business intelligence, a collection of  concepts, 
techniques, and processes for the proper identification, definition, and management of data elements 
within an organization.

• passive data dictionary  -  A DBMS data dictionary that requires a command initiated by an end user 
to update its data access statistics. See also data dictionary.

• policies  -  General statements of direction that are used to manage company operations through the 
communication and support of the organizations' objectives.

• privacy  -  The rights of individuals and organizations to determine access to data about themselves.

• procedures  -  Series of steps to be followed during the performance of an activity or process.

Page  42  of  90



Chapter 12  -  Database Administration and Security

• profile (Oracle)  -  In Oracle, a named collection of settings that controls how much of the database 
resource a given user can use.

• role (Oracle)  -   In Oracle, a named collection of database access privileges that authorize a user to 
connect to a database and use its system resources.

• schema  (Oracle)   -   A logical  grouping of  database objects,  such as tables,  indexes,  views,  and 
queries, that are related to each other. Usually, a schema belongs to a single user or application.

• security  -   Activities  and  measures  to  ensure  the  confidentiality,  integrity,  and  availability  of  an 
information system and its main asset, data.

• security  breach  -   An  event  in  which  a  security  threat  is  exploited  to  endanger  the  integrity,  
confidentiality, or availability of the system.

• security  policy  -   A collection  of  standards,  policies,  and  procedures  created  to  guarantee  the 
security of a system and ensure auditing and compliance.

• security  threat  -   An  imminent  security  violation  that  could  occur  due  to  unchecked  security  
vulnerabilities.

• security  vulnerability  -   A weakness  in  a  system component  that  could  be  exploited  to  allow 
unauthorized access or cause service disruption.

• standards  -  A detailed and specific set of instructions that describes the minimum requirements for a 
given activity. Standards are used to evaluate the quality of the output.

• systems administrator  -  The person responsible for co-ordinating an organizations' data-processing 
activities.

• tablespace (Oracle)  -  In a DBMS, a logical storage space used to group related data. Also known as 
a file group.

• user (Oracle)  -  In a system, a uniquely identifiable object that allows a given person or process to log  
on to the database.

--ooOoo--

Page  43  of  90



Chapter 13  -  Managing Transactions and Concurrency

Chapter 13  -  Managing Transactions and Concurrency

Summary

• A transaction is a sequence of database operations that access the database. A transaction represents 

a real-world event, and it must be a logical unit of work;  that is, no portion of the transaction can exist  

by itself. Either all parts are executed or the transaction is aborted. A transaction takes a database  

from one consistent state to another. A consistent database state is one in which all data integrity  

constraints are satisfied.

• Transactions have  four  main properties:   atomicity,  consistency,  isolation,  and durability.  Atomicity 

means  that  all  parts  of  the  transaction  must  be  executed;  otherwise,  the  transaction  is  aborted. 

Consistency means that the databases' consistent state is maintained, and isolation means that data 

used by one transaction cannot be accessed by another transaction until the first one is completed.  

Durability means that changes made by a transaction cannot be rolled back once the the transaction is 

committed. In addition, transaction schedules have the property of serializability - the result  of the 

concurrent execution of transactions is the same as that of the transactions being executed in serial  

order.

• SQL provides support for transactions through the use of two statements:  COMMIT, which saves 

changes to disk, and ROLLBACK, which restores the previous database state. 

• SQL transactions  are  formed  by  several  SQL statements  or  database  requests.  Each  database 

request originates several I/O database operations.

• The transaction log keeps track of all transactions that modify the database. The information stored in 

the transaction log is used for recovery (ROLLBACK) purposes.

• Concurrency control coordinates the simultaneous execution of transactions. The concurrent execution 

of transactions can result in three main problems:  lost updates, uncommitted data, and inconsistent  

retrievals. 

• The scheduler is responsible for establishing the order in which the concurrent transaction operations 

are executed. The transaction execution order is critical and ensures database integrity in multiuser  

database systems. The scheduler uses locking, timestamping, and optimistic methods to ensure the 

serializability of transactions.

• A lock guarantees unique access to to a data item by a transaction. The lock prevents one transaction 

from using the data  item while  another  transaction is  using it.  There  are  several  levels  of  locks:  

database, table, page, row, and field.

• Two types of locks can be used in database systems:  binary locks and shared  / exclusive locks. A 

Page  44  of  90



Chapter 13  -  Managing Transactions and Concurrency

binary lock can have only two states:   locked (1)  or unlocked (0).  A shared lock is  used when a 

transaction wants to read data from a database and no other transaction is updating the same data.  

Several shared or "read" locks can exist for a particular item. An exclusive lock is issued when a 

transaction wants to update (write to) the database and no other locks (shared or exclusive) are held  

on the data.

• Serializability of schedules is guaranteed through the use of two-phase locking. The two-phase locking 

schema has a growing phase, in which the transaction acquires all of the locks that it needs without  

unlocking any data, and a shrinking phase, in which the transaction releases all of the locks without  

acquiring new locks.

• When two  or  more  transactions  wait  indefinitely  for  each  other  to  release  a  lock,  they  are  in  a  

deadlock, also called a deadly embrace. There are three deadlock control techniques:  prevention,  

detection, and avoidance.

• Concurrency control with timestamping methods assigns a unique timestamp to each transaction and 

schedules the execution of conflicting transactions in a timestamp order. Two schemes are used to  

decide which transaction is rolled back and which continues executing:  the wait / die scheme, and the 

wound / wait scheme.

• Concurrency control with optimistic methods assumes that the majority of database transactions do 

not conflict and that transactions are executed concurrently, using private, temporary copies of the 

data. At commit time, the private copies are updated to the database.

• Database recovery restores the database from a given state to a previous consistent state. Database 

recovery is triggered when a critical event occurs, such as a hardware error or application error.

Page  45  of  90



Chapter 13  -  Managing Transactions and Concurrency

Content

13.1  What is a Transaction ?

Transaction  -  any action that reads from or writes to a database. It is a logical unit of work that must be 
entirely completed or entirely aborted; no intermediate states are acceptable. 

A transaction may consist of the following  -

• A simple SELECT statement to generate a list of table contents;

• A series of related UPDATE statements to change the values of attributes in various tables;

• A series of INSERT statements to add rows to one or more tables;

• A combination of SELECT, UPDATE, and INSERT statements.

A multicomponent transaction must not be partially completed, all of the SQL statements in the transaction  
must be completed successfully. If any of the SQL statements fail, the entire transaction is rolled back to the 
original  database state that existed before the transaction started. A successful transaction changes the 
database from one consistent state to another.

Consistent state  -  is one in which all data integrity constraints are satisfied. 

Database request  -  is the equivalent of a single SQL statement in an application program or transaction.  
Most real-world transactions are formed by two or more database requests.

13.1.1  Evaluating Transaction Results

Although the DBMS is designed to recover a database to a previous consistent state when an interruption  
prevents the completion of a transaction, the transaction itself is defined by the end user or programmer and 
must be semantically correct.

The DBMS cannot guarantee that the semantic meaning of the transaction truly represents the real-world 
event. (Even thought the syntax is correct).

13.1.2  Transaction Properties

Each individual transaction must display atomicity,  consistency,  isolation, and durability. Referred to as the 
ACID test. When executing multiple transactions, the DBMS must schedule the concurrent execution of the  
transactions' operations. The schedule must exhibit the property of serializability.

• Atomicity  -  requires that all operations (SQL requests) of a transaction be completed; if not, the 
transaction is aborted.  A transaction is treated as a single, indivisible, logical unit of work. 

• Consistency  -  indicates the permanence of the databases' consistent state. A transaction takes a 
database from one consistent state to another. If  any part of the transaction violates an integrity  
constraint, the entire transaction is aborted.

• Isolation  -  means that the data used during the execution of a transaction cannot be used by a 
second transaction until the first one is completed.

• Durability  -   ensures that  once transaction changes are done and committed,  they cannot be 
undone or lost, even in the event of system failure.

Page  46  of  90



Chapter 13  -  Managing Transactions and Concurrency

• Serializability  -   ensures that  the schedule for the concurrent  execution of  transactions yields 
consistent results. This property is important in multiuser and distributed databases in which multiple 
transactions are likely to be executed concurrently.  Serializability is not an issue if  only a single  
transaction is executed.

Single-user database system automatically ensures serializability and isolation of the database, because 
only one transaction can be executed at a time. The atomicity, consistency, and durability of transactions 
must be guaranteed by a single-user DBMS. 

Multiuser database systems are subject to multiple concurrent transactions, and must therefore implement 
controls  to  ensure  serializability  and  isolation  of  transactions,  in  addition  to  atomicity,  consistency,  and 
durability.

13.1.3  Transaction Management with SQL

Transaction support is provided by two SQL statements:  COMMIT,  and ROLLBACK. When a transaction 
sequence is initiated, the sequence must continue though all succeeding SQL statements until one of the 
following four events occurs -

• A COMMIT statement is reached, in which case all changes are permanently recorded within the 
database. The COMMIT statement automatically ends the SQL transaction.

• A ROLLBACK statement is reached, in which case all changes are aborted and the database is  
rolled back to its previous consistent state.

• The end of the program is reached. Equivalent to COMMIT.

• The program is abnormally terminated. Equivalent to ROLLBACK.

13.1.4  The Transaction Log

Transaction log  -  used by a DBMS to keep track of all transactions that update the database. The DBMS 
uses the information stored in this log for a recovery requirement triggered by a ROLLBACK statement,  
abnormal termination, or system failure.

The DBMS automatically updates the transaction log while it executes transactions that modify the database.  
The transaction log stores the following  -  

• A record for the beginning of the transaction;

• For each transaction component (SQL statement)  -  

◦ The type of operation being performed (INSERT, UPDATE, DELETE);

◦ The names of the objects affected by the transaction;

◦ The "before" and "after" values for the fields being updated;

◦ Pointers to the previous and next transaction log entries for the same transaction;

• The ending (COMMIT) of the transaction.

The transaction log is a critical part of the database, and is usually implemented as one or more files that are  
managed separately from the actual database files. 

Page  47  of  90



Chapter 13  -  Managing Transactions and Concurrency

13.2  Concurrency Control

Concurrency control  -  coordinating the simultaneous execution of transactions in a multiuser database 
system. 

Objective  is  to  ensure the  serializability  of  transactions in  a  multiuser  database  environment.  Important 
because  the  simultaneous  execution  of  transactions  can  create  several  data  integrity  and  consistency 
problems. The three main problems are  -  lost updates, uncommitted data, and inconsistent retrievals.

13.2.1  Lost Updates

Lost update  -  problem occurs when two concurrent operations, T1 and T2, are updating the same data 
element and one of the updates is lost (overwritten by the other transaction).

If T1 has not yet been COMMITed when T2 executes, T2 will use the old value on disk, and then overwrite 
any value that T1 writes to disk in the interim.

13.2.2  Uncommitted Data

Uncommitted data  -  occurs when two transactions, T1 and T2, are executed concurrently and the first  
transaction (T1) is rolled back after the second transaction (T2) has already accessed the uncommitted data. 
This violates the isolation property of transactions.

13.2.3  Inconsistent Retrievals

Inconsistent retrievals  -  occur when a transaction accesses data before and after one or more other 
transactions finish working with the data.

Eg: An inconsistent retrieval would occur if T1 calculated some summary (aggregate) function over a set of  
data while T2 was updating the same data. T1 may read some data before they are updated, and other data 
after they are updated.

13.2.4  The Scheduler

• Severe problems can arise when two or more concurrent transactions are executed;

• Database transactions involve a series of database I/O operations that take the database from one 
consistent state to another;

• Database consistency can only be ensured before and after the execution of transactions;

• A database  always  moves  through  an  unavoidable  temporary  state  of  inconsistency  during  a 
transactions' execution, if the transaction updates multiple tables and rows;

• The temporary inconsistency exists because a computer executes the operations serially, one after 
another. During this serial process, the isolation property prevents them from accessing data not yet  
released by other transactions;

• What would happen if two transactions executed concurrently, and they were accessing the same 
data ?  Conflict is possible among the transaction components, and the selection of one execution 
order over another might have some undesirable consequences.

• How is the correct order determined ?

Page  48  of  90



Chapter 13  -  Managing Transactions and Concurrency

Scheduler  -  is a special DBMS process that establishes the order in which the operations are executed  
within concurrent transactions. The scheduler interleaves the execution of database operations to ensure 
serializability  and  isolation  of  transactions.  The  scheduler  bases  its  actions  on  concurrency  control 
algorithms, such as locking or timestamping methods.

Not all  transactions are serializable. The DBMS determines which transactions are serializable, and then 
interleaves  the  the  execution  of  the  transactions'  operations.  Transactions  that  are  not  serializable  are 
executed on a first-come first-served basis.

The schedulers main job is to create a  serializable schedule of a transactions' operations, in which the 
interleaved execution of the transactions yields the same results as if  the transactions were executed in 
serial order (One after another). The scheduler also ensures that the CPU and storage systems are used 
efficiently. If there were no way to schedule the execution of transactions, all of them would be executed on a  
first-come first-served basis, which would result in an inefficient use of resources.

13.3  Concurrency Control with Locking Methods

Lock  -  guarantees exclusive use of a data item to a current transaction. A transaction acquires a lock prior 
to data access, and the lock is released when the transaction is completed. This series of locking actions 
assumes that concurrent transactions might attempt to manipulate the same data item at the same time.

Pessimistic locking  -  the use of locks based on the assumption that conflict between transactions is likely.

Lock manager  -  handles all lock information, responsible for assigning and policing the locks used by 
transactions.

13.3.1  Lock Granularity

Lock granularity  -  indicates the level of lock use. Locking can take place at the following levels  -

• Database Level  -  the entire database is locked, preventing the use of any tables in the database 
by any other transactions. Good for batch processes, but is unsuitable for multiuser DBMSs - data 
access would be very slow if many transactions had to wait for the previous one to be completed.

• Table Level  -  the entire table is blocked, preventing access to any row by any other transactions.  
Two transactions can access the same database, as long as they access different tables.

The table is blocked even though different transactions may require access to different parts of the  
same table, ie: not interfere with each other. Not suitable for multiuser DBMSs.

• Page Level  -  an entire page is locked. A diskpage, or  page, is the equivalent of a  diskblock (a 
directly addressable section of a disk). A page has a fixed size, and the entire page must be read  
from disk, updated, and written back to disk. A table can span several pages, and a page can contain 
several rows of one or more tables. Page-level locks are the most commonly used locking method 
for multiuser DBMSs.

• Row Level  -   is  much less restrictive  than the other  lock types.  The DBMS allows concurrent 
transactions to access different rows of the same table, even when the rows are located on the same 
page.

Although the row-level locking approach improves the availability of data, its management requires 
high overhead because a lock exists for each row in the table. 

Page  49  of  90



Chapter 13  -  Managing Transactions and Concurrency

• Field Level  -  allows concurrent transactions to access the same row as long as they require the  
use of different fields. Although filed-level locking yields the most flexible multiuser data access, it is  
rarely implemented because it requires an extremely high level of overhead, and because the row-
level lock is much more useful in practice.

13.3.2  Lock Types

Binary Locks  -  A binary lock has only two states:  locked(1), or unlocked(0). If a object such as a database 
table,  page, or row is locked by a transaction,  no other  transaction can use that  object.  If  an object  is 
unlocked, any transaction can lock the object for its use. 

Every database transaction requires that the affected object is locked, and a transaction must unlock the 
object after its termination. Every transaction requires a lock and unlock operation for each accessed data 
item, which is automatically managed by the DBMS. 

Binary locks are considered too restrictive to yield optimal concurrency conditions. Eg: the DBMS will not  
allow  two  transactions  to  read  the  same database  object  even  though  neither  transaction  updates  the 
database, and no concurrency problems can occur.

Shared / Exclusive Locks  -  

Exclusive lock exists when access is reserved specifically for the transaction that locked the object. Must be 
used when the potential for conflict exists. An exclusive lock is issued when a transaction wants to update 
(write) a data item, and no locks are held on that data item.

Mutual exclusive rule  -  Only one transaction at a time can own an exclusive lock on an object.

Shared lock exists when concurrent transactions are granted read access on the basis of a common lock. 
Produces no conflict as long as all the concurrent transactions are read-only. A shared lock is issued when a 
transaction wants to read data from the database, and no exclusive lock is held on that data item. 

Using the shared locking concept, a lock can have three states:  unlocked, shared (read), and exclusive  
(write).

Although the use of  shared locks renders data access more efficient,  a shared / exclusive lock schema 
increases the lock managers overhead  -  

• The type of lock must be known before a lock can be granted;

• Three lock operations exist: READ_LOCK to check the type of lock, WRITE_LOCK to issue the lock; 
and UNLOCK to release the lock;

• The schema has been enhanced to allow a lock to upgrade from shared to exclusive, and a lock  
downgrade from exclusive to shared.

Although locks prevent serious data inconsistencies, they can lead to two major problems -

• The resulting transaction schedule may not be serializable;

• The schedule may create deadlocks.

Deadlock  -  occurs when two, or more, transactions wait indefinitely for each other to unlock data.

Page  50  of  90



Chapter 13  -  Managing Transactions and Concurrency

13.3.3  Two-Phase Locking to Ensure Serializability

Two-phase locking  -  defines how transactions acquire and relinquish locks. Two-phase locking guarantees 
serializability, but it does not prevent deadlocks. The phases are -

• Growing phase  -  in which a transaction acquires all required locks without unlocking any data.  
Once all locks have been acquired, the transaction is in its locked state.

• Shrinking phase  -  in which a transaction releases all locks and cannot obtain a new lock.

Governed by the following rules  -

• Two transactions cannot have conflicting locks;

• No unlock operation can precede a lock operation in the same transaction;

• No data are affected until all locks are obtained  -  that is, until a transaction is in its locked state.

Two-phase  locking  increases  the  transaction  processing  cost,  and  might  cause  additional  undesirable 
effects, such as deadlocks.

13.3.4  Deadlocks

Deadlock  -  occurs when two transactions wait indefinitely for each other to unlock data. 

Eg:   T1 - access X and Y
T2 - access Y and X     (known as a deadly embrace).

Deadlock is only possible only when one of the transactions wants to obtain an exclusive lock on a data item,  
no deadlock condition can exist among shared locks.

Three basic techniques to control deadlocks  -  

• Deadlock prevention  -  A transaction requesting a new lock is aborted when there is the possibility 
that a deadlock can occur. If the transaction is aborted, all changes made by the transaction are 
rolled  back  and  all  locks  are  released.  The  transaction  is  rescheduled  for  execution.  Deadlock 
prevention works because it avoids the conditions that lead to deadlocking. 

• Deadlock detection  -  The DBMS periodically tests the database for deadlocks. If a deadlock is 
found,  the  "victim"  transaction  is  aborted  (rolled  back  and  restarted),  and  the  other  transaction 
continues.

• Deadlock avoidance  -   The transaction must obtain all  of  the locks it  needs before it  can be 
executed. This technique avoids the rolling back of conflicting transactions by requiring that locks be 
obtained in succession. However, this increases response times.

The choice of which deadlock control method to use depends on the database environment. If probability of  
deadlocks is  low,  deadlock detection is  recommended.  If  the probability of  deadlocks is  high,  deadlock 
prevention  is  recommended.  If  response time is  not  important,  deadlock  avoidance can be used.  Most 
current DBMSs support deadlock detection.

Page  51  of  90



Chapter 13  -  Managing Transactions and Concurrency

13.4  Concurrency Control with Timestamping Methods

Timestamping approach  -  to scheduling concurrent transactions assigns a global, unique timestamp to 
each transaction. The timestamp value produces an explicit order in which transactions are submitted to the 
DBMS. 

Timestamps must have two properties  -  

Uniqueness  -  ensures that no equal timestamp values can exist.

Monotonicity  -  ensures that timestamp values always increase.

All database operations within the same transaction must have the same timestamp. The DBMS executes 
conflicting  operations  in  timestamp  order,  thereby  ensuring  serializability  of  the  transactions.  If  two 
transactions conflict, one is stopped, rolled back, rescheduled, and assigned a new timestamp value.

Disadvantage of the timestamping approach is that each value stored in the database requires two additional  
timestamp fields: one for the last time the field was read, and one for the last update. It increases memory 
needs and processing overhead.

Timestamping demands a lot of system resources because many transactions might have to be stopped,  
rescheduled, and restarted.  

13.4.1  Wait / Die and Wound / Wait Schemes

Timestamping methods are used to mange concurrent transaction execution.  Two schemes are used to 
decide which transaction is rolled back, and which continues executing -

Wait / Die  -  the older transaction waits for the younger one to complete and release its locks

• If the transaction requesting the lock is the older of the two transactions, it will wait until the other 
transaction is completed and the locks are released;

• If the transaction requesting the lock is the younger of the two transactions, it will die (rollback), and  
is rescheduled using the same timestamp.

Wound / Wait  -  the older transaction rolls back the younger transaction and reschedules it.

• If the transaction requesting the lock is the older of the two transactions, it will preempt (wound) the 
younger transaction by rolling it back. The younger, preempted transaction is rescheduled using the 
same timestamp;

• If the transaction requesting the lock is the younger of the two transactions, it will wait until the other  
transaction is completed, and the locks are released.

In both schemes, one of the transactions waits for the other transaction to finish and release the locks. 
However, in many cases a transaction requests multiple locks.  How long should a transaction have to wait ?
Some transactions may have to wait indefinitely, causing a deadlock.

To prevent a deadlock, each lock request has an associated time-out value. If the lock is not granted before  
the time-out expires, the transaction is rolled back.

Page  52  of  90



Chapter 13  -  Managing Transactions and Concurrency

13.5  Concurrency Control with Optimistic Methods

Optimistic approach  -  is based on the assumption that the majority of database operations do not conflict. 
The optimistic approach requires neither locking nor timestamping techniques. Instead, a transaction moves 
through two or three phases  -  

• Read phase  -  the transaction reads the database, executes the needed computations, and makes 
the updates to a private copy of the database values. All update operations of the transaction are 
recorded in a temporary update file, which is not accessed by the remaining transactions;

• Validation phase  -  the transaction is validated to ensure that the changes made will not affect the 
integrity and consistency of the database. If the validation test is positive, the transaction goes to the  
write  phase.  If  the validation  test  is  negative,  the  transaction is  restarted and the changes are 
discarded.

• Write phase  -  the changes are permanently applied to the database.

The optimistic approach is acceptable for most read or query database systems that require few update  
transactions.

13.6  Database Recovery Management

Database  recovery  -   restores  a  database  from a  given  state  (usually  inconsistent)  to  a  previously  
consistent state. Recovery techniques are based on the atomic transaction property.

Atomic transaction property  -  all portions of the transaction must be treated as a single, logical unit of 
work in which all operations are applied and completed to produce a consistent database. 

If a transaction operation cannot be completed for some reason, the transaction must be aborted, and any 
changes to the database must be rolled back (undone). Transaction recovery reverses all of the changes that 
the transaction made to the database before the transaction was aborted.

Recovery techniques also apply to the database and to the system after some type of critical error has 
occurred. Examples are  -

• Hardware / software failures  -  one of the most common sources of database problems;

• Human caused incidents  -  Can be intentional, or unintentional;

• Natural disasters  -  Fires, earthquakes, power failures etc.

13.6.1  Transaction Recovery

Database transaction recovery uses data in the transaction log to recover a database from an inconsistent 
state to a consistent state. Four important concepts that affect the recovery process  -  

• Write-ahead-log protocol  -  ensures that transaction logs are always written before any database 
data are actually updated. This protocol ensures that, in the case of failure, the database can later 
be recovered to a consistent state using the data in the transaction log.

• Redundant transaction logs  -  (multiple copies of the transaction log) ensures that a physical 
failure will not impair the DBMSs ability to recover data.

• Buffers  -  are temporary storage areas in primary memory used to speed up disk operations. When 
a transaction updates data, it actually updates the copy of the data in the buffer, which is much faster 

Page  53  of  90



Chapter 13  -  Managing Transactions and Concurrency

than accessing the disk. Later, all buffers that contain updated data are written to disk during a single 
operation, saving significant processing time.

• Checkpoints  -  are operations in which the DBMS writes all of its updated buffers to disk. The 
DBMS does not execute any other requests while this is happening. A checkpoint operation is also  
registered  in  the  transaction  log.  As  a  result  of  this  operation,  the  physical  database  and  the 
transaction log are in sync.

This  synchronization is  required because update operations update the copy of  the data  in  the 
buffers and not in the physical database. Checkpoints are automatically schedule by the DBMS. 
Checkpoints also play an important role in transaction recovery.

The database recovery process involves bringing the database to a consistent state after a failure. Generally, 
two techniques are used  -  

• Deferred-write  technique  (deferred update)   -   the transaction operations do not  immediately 
update  the  physical  database.  Only  the  transaction  log  is  updated.  The  database  is  physically 
updated only after the transaction reaches its commit point, using information from the transaction 
log.

If the transaction aborts before it reaches its commit point, no changes (ROLLBACK) need to be 
made to the database, because it  was never updated.  The recovery process for all  started and 
committed transactions follow these steps  -  

◦ Identify the last checkpoint in the transaction log. This is the last time transaction data were 
physically saved to disk.

◦ For a transaction that started and was committed before the last checkpoint, nothing needs to be 
done because the data are already saved.

◦ For a transaction that performed a commit operation after the last checkpoint, the DBMS uses 
the transaction log records to redo the transaction and update the database, using the "after"  
values in the transaction log. The changes are made in ascending order, from oldest to newest.

◦ For any transaction that has a ROLLBACK operation after the last checkpoint or that was left 
active (neither a COMMIT nor a ROLLBACK) before the failure occurred, nothing needs to be 
done because the database was never updated.

• Write-through  technique  (immediate  update)   -   the  database  is  immediately  updated  by 
transaction operations during the transactions' execution, even before the transaction reaches its 
commit point. 

If the transaction aborts before it reaches its commit point, a ROLLBACK or undo operation needs to 
be done to restore the database to a consistent state. In that case, the ROLLBACK operation will  
use the transaction log "before" values. The recovery process follows these steps  -  

◦ Identify the last checkpoint in the transaction log. This is the last time transaction data were 
physically saved to disk.

◦ For a transaction that started and was committed before the last checkpoint, nothing needs to be 
done because the data are already saved.

◦ For a transaction that was committed after the last checkpoint, the DBMS redoes the transaction, 
using the "after" values of the transaction log. Changes are applied in ascending order, from 
oldest to newest.

Page  54  of  90



Chapter 13  -  Managing Transactions and Concurrency

◦ For any transaction that had a ROLLBACK operation after the last checkpoint, or that was left  
active (neither a COMMIT nor a ROLLBACK) before the failure occurred, the DBMS uses the 
transaction log records to ROLLBACK or undo the operations, using the "before" values in the 
transaction log. Changes are applied in reverse order, from newest to oldest.

Page  55  of  90



Chapter 13  -  Managing Transactions and Concurrency

Key  Terms

• atomicity  -  See atomic transaction property.

• atomic transaction property  -  A property that requires all parts of a transaction to be treated as a 
single,  logical  unit  of  work  in  which  all  operations  must  be  completed  (committed)  to  produce  a 
consistent database.

• binary lock  -  A lock that has only two states:  locked (1), and unlocked (0). If a data item is locked by  
a transaction, no other transaction can use that data item.

• buffers  (buffer cache)  -  A shared, reserved memory area that stores the most recently accessed 
data blocks in RAM. A buffer cache takes advantage of a computers' fast primary memory compared to 
the  slower  secondary  memory,  minimizing the  number  of  input  /  output  (I/O)  operations  between 
primary and secondary memory.  (Also called data cache).

• checkpoints  -  In transaction management, an operation in which the database management system 
writes all of its updated buffers to disk.

• concurrency control  - A DBMS feature that coordinates the simultaneous execution of transactions 
in a multiprocessing database system while preserving data integrity. 

• consistency  -  A database condition in which all data integrity constraints are satisfied. To ensure 
consistency of a database, every transaction must begin with the database in a known consistent 
state. If not, the transaction will yield an inconsistent database that violates its integrity and business 
rules.

• consistent database state  -  A database state in which all data integrity constraints are satisfied.

• database-level lock  -  A type of lock that restricts database access to the owner of the lock and 
allows only one user at a time to access the database. This lock works for batch processes but is  
unsuitable for online multiuser DBMSs.

• database recovery  -  The process of restoring a database to a previous consistent state.

• database request  -   The  equivalent  of  a  single  SQL statement  in  an  application  program or  a 
transaction.

• deadlock  -  A condition in which two or more transactions wait indefinitely for the other to release the  
lock on a previously locked data item. Also called "deadly embrace".

• deadly embrace  -  See deadlock.

• deferred update  -  In transaction management, a condition in which transaction operations do not 
immediately update a physical database. Also called deferred write technique.

• deferred-write technique  -  See deferred update.

• diskpage  -  In permanent storage, the equivalent of a disk block, which can be described as a directly  
addressable section of a disk. A diskpage has a fixed size, such as 4K, 8K, or 16K.

• durability  -  The transaction property that indicates the permanence of a databases' consistent state. 
Transactions that have been completed will not be lost in a system failure if the database has proper 

Page  56  of  90



Chapter 13  -  Managing Transactions and Concurrency

durability.

• exclusive lock  -   A lock that  is  reserved by a transaction.  An exclusive  lock is  issued when a 
transaction requests permission to update a data item and no locks are held on that data item by any 
other transaction. An exclusive lock does not allow other transactions to access the database. See 
also shared lock.

• field-level lock  -  A lock that allows concurrent transactions to access the same row as long as they 
require the use of different fields (attributes) within that row. This type of lock yields the most flexible  
multiuser data access, but requires a high level of computer overhead.

• immediate  update  -   A database  update  that  is  performed  immediately  during  a  transactions' 
execution, even before the transaction reaches its commit point.

• inconsistent retrievals  -  A concurrency control problem that arises when a transaction calculating 
summary (aggregate) functions over a set  of  data while  other transactions are updating the data, 
yielding erroneous results.

• isolation  -  A property of a database transaction in which a data item used by one transaction is not 
available to other transactions until the first one ends.

• lock  -  A device that guarantees unique use of a data item in a particular transaction operation. A 
transaction requires a lock prior to data access; the lock is released after the operations' execution to 
enable other transactions to lock the data item for their own use.

• lock granularity  -  The level of lock use. Locking can take place at the following levels: database, 
table, page, row, and field (attribute). 

• lock manager  -  A DBMS component that is responsible for assigning and releasing locks.

• lost update  -  A concurrency control problem in which data updates are lost during the concurrent 
execution of transactions.

• monotonicity  -  A quality that ensures that timestamp values always increase. The timestamping 
approach  to  scheduling  concurrent  transactions  assigns  a  global,  unique  timestamp  to  each 
transaction. The timestamp value produces an explicit order in which transactions are submitted to the  
DBMS.

• mutual exclusive rule  -  A condition in which only one transaction at a time can own an exclusive 
lock on the same object.

• optimistic approach  -  In transaction management, a concurrency control technique, based on the 
assumption that most database operations do not conflict.

• page  -  See diskpage.

• page-level lock  -  In this type of lock, the database management system locks an entire diskpage, or 
section of a disk. A diskpage can contain data for one or more rows and from one or more tables. 

• pessimistic locking  -  The use of locks based on the assumption that conflict between transactions is 
likely.

Page  57  of  90



Chapter 13  -  Managing Transactions and Concurrency

• redundant transaction logs  -  Multiple copies of the transaction log kept by database management 
systems to ensure that the physical failure of a disk will not impair the DBMSs ability to recover data.

• row-level lock  -  A less restrictive database lock in which the DBMS allows concurrent transactions to 
access different rows of the same table, even when the rows are on the same page.

• scheduler  -   The  DBMS component  that  establishes  the  order  in  which  concurrent  transaction 
operations are executed. The scheduler interleaves the execution of database operations in a specific  
sequence to ensure serializabilty.

• serializerable  schedule  -   In  transaction  management,  a  schedule  of  operations  in  which  the 
interleaved execution of the transactions yields the same result  as if  they were executed in serial  
order.

• serializability  -  A property in which the selected order of transaction operations creates the same 
final database state that would have been produced if the transactions had been executed in a serial  
fashion.

• shared lock  -  A lock that is issued when a transaction requests permission to read data from a  
database and no exclusive locks are held on the data by another transaction. A shared lock allows  
other read-only transactions to access the database.

• table-level lock  -  A locking scheme that allows only one transaction at a time to access a table. A 
table-level lock locks an entire table, preventing access to any row by transaction T2 while transaction  
T1 is using the table.

• timestamping  -  In transaction management, a technique used in scheduling concurrent transactions 
that assigns a global unique timestamp to each transaction.

• transaction  -  A sequence of database requests that accesses the database. A transaction is a logical  
unit  of  work;  that is,  it  must be entirely completed or aborted -  no intermediate ending states are 
accepted. All transactions must have the properties of atomicity, consistency, isolation, and durability. 

• transaction log  -  A feature used by the DBMS to keep track of all transaction operations that update 
the database. The information stored in this log is used by the DBMS for recovery purposes.

• two-phase locking  -  A set of rules that governs how transactions acquire and relinquish locks. Two-
phase locking guarantees serializability,  but  it  does not  prevent deadlocks.  The two-phase locking 
protocol is divided into two phases: 1) a growing phase occurs when the transaction acquires the locks 
it needs without unlocking any existing data locks. Once all locks have been acquired, the transaction 
is in its locked point. 2) A shrinking phase occurs when the transaction releases all locks and cannot 
obtain a new lock.

• uncommitted data  -  When you are trying to achieve concurrency control, uncommitted data cause 
problems  with  data  integrity  and  consistency.  These  problems  occur  when  two  transactions  are 
executed concurrently and the first transaction is rolled back after the second transaction has already 
accessed the uncommitted data, thus violating the isolation property of transactions.

• uniqueness  -  In concurrency control, a property of timestamping that ensures no equal timestamp 
values can exist.

• wait / die  -  A concurrency control scheme in which an older transaction must wait for the younger 
transaction to complete and release the locks before requesting the locks itself. Otherwise, the newer 
transaction dies and is rescheduled.

Page  58  of  90



Chapter 13  -  Managing Transactions and Concurrency

• wound / wait  -  A concurrency control scheme in which an older transaction can request the lock, 
preempt the younger transaction, and reschedule it. Otherwise, the newer transaction waits until the 
older transaction finishes.

• write-ahead-log protocol  -   In concurrency control,  a process that  ensures transaction logs are 
written to permanent storage before any database data are actually updated. Also called a write-ahead 
protocol.

• write-through technique  -  In concurrency control, a process that ensures a database is immediately  
updated by operations during the transactions'  execution,  even before the transaction reaches its  
commit point.

--ooOoo--

Page  59  of  90



Chapter 14  -  Managing Database and SQL Performance

Chapter 14  -  Managing Database and SQL Performance

Summary

• Database performance tuning refers to a set of activities and procedures designed to ensure that an 

end-user query is processed by the DBMS in the least amount of time.

• SQL performance tuning refers to activities on the client side that are designed to generate SQL code 

that returns the correct answer in the least amount of time, using the minimum amount of resources at 

the server end.

• DBMS performance tuning refers to activities on the server side that are oriented so the DBMS is 

properly configured to respond to clients requests in the fastest way possible while making optimum 

use of existing resources.

• The  DBMS  architecture  is  represented  by  the  many  processes  and  structures  (in  memory  and 

permanent storage) used to manage a database.

• Database  statistics  refer  to  a  number  of  measurements  gathered  by  the  DBMS  that  describe  a 

snapshot of the database objects' characteristics. The DBMS gathers statistics about objects such as 

tables, indexes, and available resources, which include number of processors used, processor speed, 

and  temporary  space  available.  The  DBMS  uses  the  statistics  to  make  critical  decisions  about 

improving query processing efficiency.

• DBMSs process queries in three phases. In the parsing phase, the DBMS parses the SQL query and 

chooses the most efficient access / execution plan. In the execution phase, the DBMS executes the  

SQL query using the chosen execution plan. In the fetching phase, the DBMS fetches the data and 

sends the result set back to the client.

• Indexes are crucial in the process that speeds up data access. Indexes facilitate searching, sorting,  

and using aggregate functions and join operators.  The improvement in data access speed occurs 

because an index is an ordered set of values that contains the index key and pointers. Data sparsity  

refers to the number of different values a column could have. Indexes are recommended in high-

sparsity columns used in search conditions.

• During  query  optimization,  the  DBMS  must  choose  what  indexes  to  use,  how  to  perform  join  

operations, which table to use first, and so on. Each DBMS has its own algorithms for determining the 

most efficient way to access the data. The two most common approaches are rule-based and cost-

based optimization.

• A rule-based optimizer uses preset rules and points to determine the best approach to execute a 

query. The rules assign a "fixed cost" to each SQL operation: the costs are then added to yield the cost  

of the execution plan.

Page  60  of  90



Chapter 14  -  Managing Database and SQL Performance

• A cost-based optimizer  uses  sophisticated algorithms based on statistics  about  the  objects  being 

accessed to determine the best approach to execute a query. In this case, the optimizer process adds 

up  the  processing  cost,  the  I/O  costs,  and  the  resource  costs  (RAM  and  temporary  space)  to 

determine the total cost of a given execution plan.

• Hints  are  used  to  change  the  optimizer  mode  for  the  current  SQL statement.  Hints  are  special 

instructions for the optimizer that are embedded inside the SQL command text.

• SQL performance tuning deals with writing queries that make good use of the statistics. In particular, 

queries should make good use of indexes. Indexes are very useful when you want to select a small 

subset of rows from a large table based on a condition. When an index exists for the column used in 

the selection, the DBMS may choose to use it. The objective is to create indexes with selectivity. Index 

selectivity is a measure of the likelihood that an index will  be used in query processing. It  is also  

important to write conditional statements using some common principles.

• Query formulation deals with how to translate business questions into specific SQL code to generate 

the required results. To do this, you must carefully evaluate which columns, tables, and computations 

are required to generate the desired output.

• DBMS performance tuning includes tasks such as managing the DBMS processes in primary memory 

(allocating memory for caching purposes) and managing the structures in physical storage (allocating 

space for the data files).

Page  61  of  90



Chapter 14  -  Managing Database and SQL Performance

Content

14.1  Database Performance-Tuning Concepts

Database performance tuning  -   refers to a set  of  activities and procedures designed to reduce the 
response time of the database system - that is, to ensure that an end-user query is processed by the DBMS 
in the minimum amount of time.

Good database performance starts with good database design. No amount of fine-tuning will make a poorly 
designed database perform as well as a well-designed database.

14.1.1  Performance Tuning:  Client and Server

In general, database performance-tuning activities can be divided into those on the client side, and those on 
the server side  -  

SQL performance tuning  -  On the client side, the objective is to generate a SQL query that returns the  
correct answer in the least amount of time, using the minimum amount of resources at the server end.

DBMS performance tuning  -  On the server side, the DBMS environment must be properly configured to 
respond to the clients' requests in the fastest way possible, while making optimum use of existing resources.

14.1.2  DBMS Architecture

Data files  -  All data in a database are stored in data files. 

Table  space or  file  group  -   is  a  logical  grouping  of  several  data  files  that  store  data  with  similar  
characteristics. Eg: system table space, user data table space, index table space, temporary table space.

Data cache or buffer cache  -  is a shared, reserved memory area that stores the most recently accessed 
data blocks in RAM.

SQL cache or  procedure cache  -   is  a shared,  reserved memory area that  stores the most recently 
executed SQL statements or PL/SQL procedures, including triggers and functions.

Input / output (I/O) request  -  is a low-level data access operation that reads or writes data to and from 
computer devices, such as memory, hard disks, video, and printers.

Working with data in the data cache is much faster than working with data in the data files, because the  
DBMS does not have to wait for the hard disk to retrieve the data.

Most performance-tuning activities focus on minimizing the number of  I/O operations because using I/O 
operations is many times slower than reading data from the disk cache.

Some typical DBMS processes  (Names may vary from vendor to vendor)  -  

• Listener  -  Listens for clients requests and handles the processing of the SQL requests to other  
DBMS processes;

• User  -  The DBMS creates a user process to manage each client session. This process handles all  
requests submitted to the server.

• Scheduler  -  Organizes the concurrent execution of SQL requests.

• Lock manager  -  Manages all locks placed on database objects.

Page  62  of  90



Chapter 14  -  Managing Database and SQL Performance

• Optimizer  -  Analyzes SQL queries and finds the most efficient way to access the data.

14.1.3  Database Query Optimization Modes

Most of the algorithms proposed for query optimization are based on two principles  -  

• The selection of the optimum execution order;

• The selection of sites to be accessed to minimize communication costs.

Within these two principles, a query optimization algorithm can be evaluated on the basis of its operation  
mode, or the timing of its optimization  -  

• Operation modes  -  

◦ Automatic query optimization  -  means that the DBMS finds the most cost-effective access 
path without user intervention. More desirable from users point of view, but imposes increased 
overhead on the DBMS.

◦ Manual query optimization  -  requires that the optimization be selected and scheduled by the 
end user or programmer.

• Timing  -  

◦ Static query optimization  -  takes place at compilation time, the best optimization strategy is 
selected when the query is compiled by the DBMS.

◦ Dynamic query optimization  -  takes place at execution time, database access strategy is  
defined when the program is executed. Although dynamic query optimization is efficient, it has 
high processing overhead. The best strategy is determined every time the query is executed.

Query optimization techniques can be classified according to the type of information that is used to optimize 
the query -

• Statistically  based  query  optimization  algorithm  -   uses  statistical  information  about  the 
database. These statistics are then used by the DBMS to determine the best access strategy.

The statistical information is managed by the DBMS and is generated in one of two modes -  

◦ Dynamic statistical generation mode  -  the DBMS automatically evaluates and updates the 
statistics after each access.

◦ Manual statistical generation mode  -  the statistics must be updated periodically through a 
user selected utility.

• Rule-based query optimization algorithm  -  is based on a set of user-defined rules to determine 
the best query access strategy. The rules are entered by the end user or database administrator.

14.1.4  Database Statistics

Page  63  of  90



Chapter 14  -  Managing Database and SQL Performance

Database statistics  -  refers to a number of measurements about database objects, such as number of 
processors  used,  processor  speed,  and  temporary  space  available.  Provides  a  snapshot  of  database 
characteristics.

Database  statistics  are  stored  in  the  system  catalog  in  specially  designated  tables.  It  is  common  to 
periodically regenerate the statistics for database objects. The more current the statistics are, the better the 
chances that the DBMS will properly select the fastest way to execute a given query.

14.2  Query Processing

The DBMS processes a query in three phases -

• Parsing  -  The DBMS parses the SQL query and chooses the most efficient access/execution plan.

• Execution  -  The DBMS executes the SQL query using the chosen execution plan.

• Fetching  -  The DBMS fetches the data and sends the result set back to the client.

The processing of SQL DDL statements (CRETE TABLE) is different from the processing required by DML 
statements  (SELECT,  INSERT,  UPDATE,  or  DELETE).  The difference is  that  a  DDL statement  actually 
updates the data dictionary tables or system catalog, while a DML statement mostly manipulates end-user  
data.

14.2.1  SQL Parsing Phase

Parsing  -  Breaking down the query into smaller units and transforming the original SQL query into a slightly 
different version of the original SQL code, but one that is fully equivalent and more efficient.

• Fully equivalent  -  means that the optimized query results are always the same as the original query.

• More efficient  -  means that the optimized query will almost always execute faster than the original 
query. The DBMS may use database statistics to determine the most efficient way to execute the 
query.

Query optimizer  -  analyzes the SQL query and finds the most efficient way to access the data. Parsing a 
SQL query requires several steps. The SQL query is  -

• Validated for syntax compliance;

• Validated against the data dictionary to ensure that the table names and column names are correct;

• Validated against the data dictionary to ensure that the user has proper access rights;

• Analyzed and decomposed into more atomic components;

• Optimized through transformation into a fully equivalent but more efficient SQL query;

• Prepared for execution by determining the most efficient execution or access plan.

Access plan  -  is the result of parsing a SQL statement. It contains the series of steps a DBMS will use to  
execute the query and return the result in the most efficient way.
14.2.2  SQL Execution Phase

Page  64  of  90



Chapter 14  -  Managing Database and SQL Performance

All I/O operations indicated in the access plan are executed. When the execution plan is run, the proper  
locks - if needed - are acquired for the data to be accessed, and the data are retrieved from the data files 
and placed in the DBMSs data cache.

14.2.3  SQL Fetching Phase

After the parsing and execution phases are completed, all rows that match the specified condition/s are  
retrieved, sorted, group, and aggregated (if required). During the fetching phase, the rows of the resulting 
query result set are returned to the client.

14.2.4  Query Processing Bottlenecks

Query processing bottleneck  -  is a delay introduced in the processing of an I/O operation that causes the  
overall system to slowdown.

Five components of a DBMS typically cause bottlenecks  -  

• CPU  -  The CPU processing power of the DBMS should match the systems' expected workload.

• RAM  -  If there is not enough RAM available, moving data among components that are competing 
for scarce RAM can create a bottleneck.

• Hard disk  -  Common causes of bottlenecks are hard disk speed and data transfer rates.

• Network  -  When many network nodes access the network at the same time, bottlenecks are likely.

• Application code  -  Two of the most common causes of bottlenecks are inferior application code, 
and poorly designed databases. Inferior code can be improved with code optimization techniques, as 
long as the underlying database design is sound. No amount of coding will make a poorly designed  
database perform better.

14.3  Indexes and Query Optimization

Indexes are crucial in speeding up data access because they facilitate searching, sorting, using aggregate 
functions, and even join operations. The improvement in data access speed occurs because an index is an  
ordered set of values that contains the index key and pointers. The pointers are the row IDs for the actual  
table rows.

An index scan is more efficient than a full table scan because the index data are preordered and the amount 
of data is usually much smaller. So, when performing searches, it is almost always better for the DBMS to 
use the index to access a table, than to scan all rows in a table sequentially.

If indexes are so important, why not index every column in every table ?  The simple answer is that it is not  
practical to do so. Indexing every column in every table overtaxes the DBMS in terms of index-maintenance 
processing, especially if  the table has many attributes and rows, or requires many inserts, updates, and 
deletes.

Measure that determines the need for an index  -  

Data sparsity  -  refers to the number of different values a column can have. If a column can only have, say, 
two values, the column has low sparsity. In contrast, if the column can have many different values, it has high 
sparsity.  
Knowing the sparsity helps decide whether the use of an index is appropriate. Eg; if a search is performed in  

Page  65  of  90



Chapter 14  -  Managing Database and SQL Performance

a column with low sparsity, a high percentage of the rows have to read anyway, so index processing may be  
unnecessary work.

Indexes are implemented using one of the following data structures  -  

• Hash index  -  is based on an ordered list of hash values. This type of index is good for simple and 
fast lookup operations based on equality conditions. Eg: LName="Fred".

• B-tree index  -  is an ordered data structure organized as an upside-down tree. B-tree indexes are  
"self-balanced", which means that it takes approximately the same amount of time to access any 
given row in the index. Most common type of index used in databases. This type of index is used 
mainly in tables in which column values repeat a relatively small number of times.

• Bitmap index  -  uses a bit array (0s and 1s) to represent the existence of a value or condition. This  
type of index is used mostly in data warehouse applications in tables with a large number of rows in  
which a small number of column values repeat many times. Bitmap indexes use less space than B-
tree indexes because they use bits instead of bytes.

14.4  Optimizer Choices

Query optimization is the central activity during the parsing phase in query processing. The query optimizer 
can operate in one of two modes  -  

• Rule-based optimizer  -  uses preset rules and points to determine the best approach to execute a 
query. The rules assign a "fixed cost" to each SQL operation, which are then added to yield the cost  
of the execution plan.

• Cost-based optimizer  -  uses sophisticated algorithms based on statistics about the objects being 
accessed to determine the best approach to execute a query. The optimizer process adds up the 
processing cost, the I/O cost, and resources cost (RAM etc) to determine the total cost of a given 
execution plan. 

The optimizers'  objective is  to find alternative ways to  execute a query,  to evaluate  the "cost"  of  each 
alternative, and then to choose the one with the lowest cost.

14.4.1  Using Hints to Affect Optimizer Choices

In some instances the optimizer might not choose the best optimization plan. Sometimes the end user would 
like to change the optimizer mode for the current SQL statement.

Optimizer hints  -  are special instructions for the optimizer that are embedded inside the SQL command 
text.
Eg:  SELECT /*+ ALL_ROWS*/*, or  SELECT /*+FIRST_ROWS*/*.

14.5  SQL Performance Tuning

A poorly written SQL query can bring a database system to its knees form a performance point of view. The 
majority of database performance problems are related to poorly written SQL code.

14.5.1  Index Selectivity

Indexes are the most important technique used in SQL performance optimization. The key is to know when 
an index is used. Indexes are likely to be used  -  

Page  66  of  90



Chapter 14  -  Managing Database and SQL Performance

• When an indexed column appears by itself in the search criteria of a WHERE or HAVING clause.

• When an indexed column appears by itself in a GROUP BY or ORDER BY clause.

• When a MAX or MIN function is applied to an indexed column.

• When the data sparsity on the indexed column is high.

Index selectivity  -  is a measure of the likelihood that an index will  be used in query processing. The 
objective is to create indexes with high selectivity.

General guidelines for creating and using indexes  -  

• Create indexes for each single attribute used in a WHERE, HAVING, ORDER BY, or GROUP BY 
clause.

• Do not use indexes in small tables or tables with low sparsity.

• Declare primary and foreign keys so the optimizer can use the indexes in join operations.

• Declare indexes in join columns other than PK or FK.

14.5.2  Conditional Expressions

A conditional expression is normally placed within a WHERE or HAVING clause of  a SQL statement. It 
restricts the output of a query to only the rows that match the conditional criteria.

Common practice to write efficient conditional expressions in SQL code  -  

• Use simple columns or literals as operands in conditional expressions - avoid the use of conditional  
expressions with functions wherever possible.

• Numeric field comparisons are faster than character, date, and NULL comparisons.

• Equality comparisons are faster than inequality comparisons (ie: = as opposed to >= ).

• Wherever possible, transform conditional expressions to use literals.

• When using multiple conditional expressions, write the equality conditions first.

• If you use multiple AND conditions, write the condition most likely to be false first.

• When evaluating multiple OR conditions, put the condition most likely to be true first. 

• Whenever possible, try to avoid the use of the NOT logical operator.

14.6  Query Formulation

SELECT is most commonly used for queries in applications.

Page  67  of  90



Chapter 14  -  Managing Database and SQL Performance

14.7  DBMS Performance Tuning

DBMS performance tuning at the server end focuses on setting the parameters used for  -

• Data cache  -   The data cache must be set large enough to permit as many data requests as 
possible to be serviced from the cache.

• SQL cache  -  stores the most recently executed SQL statements, after they have been parsed by 
the optimizer.  The same query may be executed many times,  without  having to go through the 
parsing phase again.

• Sort cache  -  is used as a temporary storage area for ORDER BY or GROUP BY operations, as  
well as for index-creation functions.

• Optimizer mode  -  Most DBMSs operate in either cost-based or rule-based optimization mode. 
Others automatically determine the optimization mode based on whether database statistics are 
available.

Managing the physical storage details of the data files also plays an important role in DBMS performance 
tuning. General recommendations for physical storage of databases  -  

• Use RAID (Redundant array of independent disks)  to provide both performance improvement and 
fault tolerance. The most common RAID configurations  -  

RAID 
Level

Description

0 The data blocks are spread over separate drives. Also known as striped array. 
Provides increased performance, but no fault tolerance.

1 The same data blocks are written (duplicated) to separate drives. Also referred 
to as mirroring or duplexing. Provides increased read performance, and fault 
tolerance via data redundancy.

3 The data are striped across separate drives, and parity data are computed and 
stored  in  a  dedicated  drive.  provides  good  read  performance,  and  fault 
tolerance via parity data.

5 The data and parity data are striped across separate drives. Provides good read 
performance and fault tolerance via parity data.

• Minimize disk contention. Use multiple, independent storage volumes with independent spindles to 
minimize hard disk cycles.

• Put high usage tables in their own table spaces, so the database minimizes conflict with other tables.

• Assign separate data files in separate storage volumes for the indexes, system, and high-usage 
tables.  This ensures that  index operations will  not  conflict  with end-user data  or data  dictionary 
operations.

• Take advantage of the various table storage organizations available in the database.

• Partition tables based on usage. Put the table partitions closest to where they are used the most.

• Use denormalized tables where appropriate.

Page  68  of  90



Chapter 14  -  Managing Database and SQL Performance

• Store computed and aggregated attributes in tables.  (ie:  Use derived attributes).  This minimizes 
computations in queries and join operations.

14.8  Query Optimization Example

Creating an index -

SQL>   CREATE INDEX QOV_NDX2 ON QOVENDOR(V_NAME);

Page  69  of  90



Chapter 14  -  Managing Database and SQL Performance

Key  Terms

• access plan  -  A set of instructions generated at application compilation time that is created and 
managed by a DBMS. The access plan predetermines how an applications' query will  access the 
database at runtime.

• automatic query optimization  -  A method by which a DBMS finds the most efficient access path for 
the execution of a query.

• bitmap index  -  An index that uses a bit array (0s and 1s) to represent the existence of a value or 
condition.

• b-tree index  -  An ordered data structure organized as an upside-down tree.

• buffer cache  -  A shared, reserved memory area that stores the most recently accessed data blocks 
in RAM. A buffer cache takes advantage of a computers' fast primary memory compared to the slower  
secondary memory, minimizing the number of input / output (I/O) operations between primary and 
secondary memory. Also called data cache.

• clustered index table  -  See index organized table.

• cost-based optimizer  -  A query optimizer technique that uses an algorithm based on statistics about 
the objects being accessed, including number of rows, indexes available, index sparsity, and so on.

• database performance tuning  -  A set of activities and procedures designed to reduce the response 
time of a database system - that is, to ensure that an end-user query is processed by the DBMS in the  
minimum amount of time.
 

• database statistics  -  In query optimization, measurements about database objects, such as the 
number of rows in a table, number of disk blocks used, maximum and average row length, number of 
columns in each row, and number of distinct values in each column. Such statistics provide a snapshot 
of database characteristics.

• data cache  -  A shared, reserved memory area that stores the most recently accessed data blocks in  
RAM. Also called buffer cache.

• data files  -  A named physical storage space that stores a databases' data. It can reside in a different  
directory on a hard disk, or on one or more hard disks. All data in a database are stored in data files. A 
typical enterprise database is normally composed of several data files. A data file can contain rows 
from one or more tables.

• data sparsity   -  A column distribution of values, or the number of different values a column can have.

• DBMS performance tuning  -  Activities to ensure that clients' requests are addressed as quickly as 
possible while making optimum use of existing resources.

• dynamic query optimization  -  The process of determining the SQL access strategy at run time, 
using the most up-to-date information about the database. Contrast with static query optimization.

• dynamic statistical generation mode  -  In a DBMS, the capability to automatically evaluate and 
update the database access statistics after each data access.

• extends  -  In a DBMS environment, refers to the ability of data files to expand in size automatically  
using predefined increments.

• file group  -  See table space.

Page  70  of  90



Chapter 14  -  Managing Database and SQL Performance

• function-based index  -  A type of index based on a specific SQL function or expression.

• hash index  -  An index based on an ordered list of hash values.

• index-organized table  -  In a DBMS, a type of table storage organization that stores end-user data 
and index data in consecutive locations in permanent storage. Also known as cluster-indexed table.

• index selectivity  -  A measure of how likely an index is to be used in query processing.

• input / output (I/O) request  -  A low-level operation that reads or writes data to and from computer  
devices such as memory, hard disks, video, and printers.

• manual query optimization  -  An operation mode that requires the end user or programmer to define 
the access path for the execution of a query.

• manual statistical generation mode  -  A mode of generating statistical data access information for 
query optimization. In this mode, the DBA must periodically run a routine to generate the data access 
statistics - for example, running the RUNSTAT command in an IBM DB2 database.

• optimizer hints  -  Special instructions for the query optimizer that are embedded inside the SQL 
command text.

• procedure cache  -  A shared, reserved memory area that stores the most recently executed SQL 
statements or PL/SQL procedures, including triggers and functions. Also called SQL cache.

• query optimizer  -  A DBMS process that analyses SQL queries and finds the most efficient way to  
access the data. The query optimizer generates the access or execution plan for the query.

• query processing bottleneck  -  In query optimization, a delay introduced in the processing of an I/O 
operation that causes the overall system to slow down.

• RAID  -  An acronym for Redundant Array of Independent Disks. RAID systems use multiple disks to 
create  virtual  disks  (storage  volumes)  from  several  individual  disks.  RAID  systems  provide 
performance improvement, fault tolerance and a balance between the two.

• rule-based optimizer  -   A query optimization mode based on the rule-based query optimization 
algorithm.

• rule-base query optimization algorithm  -  A query optimization technique that uses preset rules and 
points to determine the best approach to executing a query.

• static query optimization  -  A query optimization mode in which the access path to a database is 
predetermined at compilation time. Contrast with dynamic query optimization.

• statistically  based  query optimization  algorithm  -   A query  optimization  technique  that  uses 
statistical information about a database. The DBMS then uses these statistics to determine the best 
access strategy.

• SQL cache  -   A shared,  reserved  memory  area  that  stores  the  most  recently  executed  SQL 
statements or PL/SQL procedures, including triggers and functions. Also called procedure cache.

• SQL performance tuning  -  Activities to help generate a SQL query that returns the correct answer in  
the least amount of time, using the minimum amount of resources at the server end.

• table space  -  In a DBMS, a logical storage space used to group related data. Also known as a file 
group. --ooOoo--

Page  71  of  90



Chapter 15  -  Databases for Decision Support

Chapter 15  -  Databases for Decision Support

Summary

• Business intelligence (BI) is a term for a comprehensive, cohesive, and integrated set  of applications 

used  to  capture,  collect,  integrate,  store,  and  analyze  data  with  the  purpose  of  generating  and 

presenting information to support business decision making.

• Decision  support  systems  (DSS)  refer  to  an  arrangement  of  computerized  tools  used  to  assist 

managerial decision making within a business. DSSs were the original precursor of current-generation 

BI systems.

• Operational data are not well suited for decision support. From the end users' point of view, decision 

support  data  differ  from  operational  data  in  three  main  areas:   time  span,  granularity,  and 

dimensionality.

• The data warehouse is an integrated, subject-oriented, time-variant, non-volatile collection of data that 

provides support for decision making. The data warehouse is usually a read-only database optimized 

for data analysis and query processing. A data mart is a small, single-subject data warehouse subset 

that provides decision support to a small group of people.

• The star schema is a data-modeling technique used to map multidimensional decision support data 

into a relational database for advanced data analysis. The basic star schema has four components: 

facts, dimensions, attributes, and attribute hierarchies. Facts are numeric measurements or values that 

represent a specific business aspect  or activity.  Dimensions are general  qualifying categories that  

provide  additional  perspectives  to  facts.  Conceptually,  the  multidimensional  data  model  is  best 

represented by a three-dimensional cube. Attributes can be ordered in well-defined hierarchies, which 

provide  a  top-down organization that  is  used for  two main  purposes:   to  permit  aggregation  and 

provide drill-down and roll-up data analysis.

• Data analytics is a subset of BI functionality that provides advanced data analysis tools to extract 

knowledge from business data. Data analytics can be divided into explanatory and predictive analytics. 

Explanatory analytics focuses on discovering and explaining data characteristics and relationships. 

Predictive analytics focuses on creating models to predict future outcomes or events based on the 

existing data.

• Data  mining  automates  the  the  analysis  of  operational  data  to  find  previously  unknown  data 

characteristics, relationships, dependencies, and trends. The data-mining process has four phases: 

data preparation, data analysis and classification, knowledge acquisition, and prognosis.

• Predictive  analytics  uses the  information generated  in  the data-mining phase to  create  advanced 

Page  72  of  90



Chapter 15  -  Databases for Decision Support

predictive models with high degrees of accuracy.

• Online analytical processing (OLAP) refers to an advanced data analysis environment that supports  

decision making, business modelling, and operations research.

• SQL has been enhanced with extensions that support OLAP-type processing and data generation.

Page  73  of  90



Chapter 15  -  Databases for Decision Support

Content

15.1  The need for Data Analysis

How can companies survive on lower margins and still make a profit ?  The key is in having the right data at  
the right time to support the decision making process.

Changes  in  the  business  world,  such  as  globalization,  expanding  markets,  mergers  and  acquisitions, 
increased regulation,  and new technologies,  called  for  new ways of  integrating and managing decision 
support across levels, sectors, and geographic locations. This more comprehensive and integrated decision 
support framework within organizations became known as business intelligence.

15.2  Business Intelligence

Business intelligence (BI)  -  is a term that describes a comprehensive, cohesive, and integrated set of  
tools  and  processes  used  to  capture,  collect,  integrate,  store,  and  analyze  data  with  the  purpose  of  
generating and presenting information to support business decision making. This intelligence is based on 
learning and understanding the facts  about  the business  environment.  BI  is  a  framework  that  allows a 
business to transform data into information, information into knowledge, and knowledge into wisdom.

BI is not a product by itself, but a framework of concepts, tools, and technologies that help a business better 
understand its core capabilities, provide snapshots of the company situation, and identify key opportunities to 
create competitive advantage. BI provides a framework for  -

• Collection and storing operational data  (Not really part of BI system, operational input to BI);

• Aggregating the operational data into decision support data;

• Presenting such information to the end user to support business decisions;

• Making business decisions, which in turn generate more data that are collected, stored and so on;

• Monitoring results to evaluate outcomes of the business decisions, which again provides more data 
to be collected, stored, and so on;

• Predicting future behaviour and outcomes with a high degree of accuracy.

15.2.1  Business Intelligence Architecture

Six components provide the functionality for BI systems  -  

Component Description

ETL tools Extraction, transformation and loading (ETL)  -  tools collect, filter, integrate and 
aggregate  internal  and  external  data  to  be saved  into  a  data  store  optimized  for 
decision support.

Data store The data store is optimized for decision support, and is generally represented by a 
data warehouse or a data mart.

Query and reporting Performs data selection and retrieval. Used by the data analyst to create queries that  
access the database and create the required reports.

Data visualization Presents data to the end user in a variety of meaningful and innovative ways.

Data monitoring and 
alerting

Allows real-time monitoring of business activities.

Page  74  of  90



Chapter 15  -  Databases for Decision Support

Data analytics Performs data analysis and data-mining tasks using the data in the data store. Data 
analysis  can  be  either  explanatory  or  predictive.  Explanatory  analysis  uses  the 
existing data in the data store to discover relationships and their types, and predictive 
analysis creates statistical models of the data that allow predictions of future values 
and events.

BI uses an arrangement of best management practices to manage data as a corporate asset.

Master data management (MDM)  -  is a collection of concepts, techniques, and processes for the proper 
identification, definition, and management of data elements within an organization. MDMs main goal is to 
provide a comprehensive and consistent definition of all data within an organization. MDM ensures that all  
company resources (people, procedures, and IT systems) that work with data have uniform and consistent 
views of the companys' data.

Governance  -  is a method or process of government. BI provides a method for controlling and monitoring 
business health  and for  consistent  decision making.  Having such governance creates accountability  for 
business decisions.

Key performance indicators  (KPIs)  -  are quantifiable numeric or scale-based measurements that assess 
the companys' effectiveness or success in reaching its strategic and operational goals. Some examples of  
KPIs  -  

• General  -   Year-to-year  measurements  of  profit  by  line-of-business,  same-store-sales,  product 
turnovers, product recalls, sales by promotion, and sales by employee.

• Finance  -  Earnings per share, profit margin, revenue per employee, percentage of sales to account  
receivables, and assets to sales.

• Human resources  -  Applicants to job openings, employee turnover, and employee longevity.

• Education  -  Graduation rates, number of incoming freshman, student retention rates, publication 
rates, and teaching evaluation scores.

The heart of the BI system is its advanced information and decision support capabilities. A modern BI system 
provides three distinctive reporting styles  -  

• Advanced  reporting  -   presents  insightful  information  about  the  organization  in  a  variety  of 
presentation formats.

• Monitoring and alerting  -  After a decision has been made, the BI system offers ways to monitor 
the decisions outcome.

• Advanced data analytics  -  provides tools to help the end user discover relationships, patterns,  
and  trends  hidden  within  the  organizations  data.  Two  types  of  data  analysis:  explanatory  and 
predictive.

15.2.2  Business Intelligence Benefits

Besides improved decision making, BI provides other benefits  -  

• Integrating architecture  -  Supports diverse hardware such as mainframes, servers, desktops, and 
mobile devices.

Page  75  of  90



Chapter 15  -  Databases for Decision Support

• Common user interface for data reporting and analysis  -  BI front ends can provide up-to-the-minute 
consolidated information using a common interface for all company users.

• Common data repository fosters single version of company data  -  BI provides a framework to 
integrate such data under a common environment and present a single version of the data.

• Improved organizational performance  -  results in added efficiency, reduced waste, increased sales, 
reduced employee and customer turnover, and an increased bottom line.

15.2.3  Business Intelligence Evolution

Decision support system (DSS)  -  is an arrangement of computerized tools used to assist managerial 
decision making. First-generation DSS was the precursor of the modern BI environment. A DSS typically has 
a much narrower focus and reach than a BI solution. 

Evolution of information dissemination used in BI  -  

• Late 1970s  -  centralized predefined reports running on mainframes or minicomputers.

• Desktop computers 1980s  -  Spreadsheet, information downloaded from centralized data stores and 
manipulated in desktop spreadsheets.

• 1990s  -   All  data  integrated  into  IT umbrella,  first-generation  DSS.  Still  used  spreadsheet  like 
features.

• Mid 1990s  -  Once DSSs were established, evolution of BI flourished, with the introduction of the 
data warehouse, and OLAP (online analytical processing).

• Rapid changes in IT technology and the Internet revolution led to advanced BI systems, such as 
Web-based dashboards, and mobile BI that runs on mobile smart devices.

15.2.4  Business Intelligence Technology Trends

Some technological trends are  -  

• Data storage improvements  -   New data storage technologies offer increased performance and 
larger capacity that make data storage faster and more affordable.

• Business  intelligence  appliances  -   Vendors  offer  plug-and-play  appliances  optimized  for  data 
warehouse and BI applications.

• Business intelligence as a service  -  Cloud-based services allow any corporation to rapidly develop 
a data warehouse store without the need for hardware, software, or extra personnel.

• Big Data  analytics  -   The  Big  Data  phenomenon is  creating a  new market  for  data  analytics. 
Organizations are turning to social media as the new source for information and knowledge to gain 
competitive advantages.

• Personal analytics  -  OLAP brought data analytics to the desktop of every user in an organization.  
Mobile BI is extending business decision making outside the walls of the organization. BI can be 
deployed to mobile users who are closer to customers.

Page  76  of  90



Chapter 15  -  Databases for Decision Support

15.3  Decision Support Data

Although BI is used at strategic and tactical managerial levels, its effectiveness depends on the quality of 
data gathered at the operational level.

15.3.1  Operational Data vs Decision Support Data

Operational data and decision support data serve different purposes, so their formats and structures differ. 
Whereas operational data are useful for capturing daily business transactions, decision support data give 
tactical and strategic business meaning to the operational data. 

From the data analysts' point of view, decision support data differ from operational data in three main areas  - 

• Time span  -  Operational data cover a short time frame. Decision support data tend to cover a 
longer time frame.  Managers focus on sales generated during the last month, or the last year rather  
than a specific invoice, for example.

• Granularity (level of aggregation)  -  Decision support data must be presented at different levels of 
aggregation, from highly summarized to nearly atomic.

◦ Drill down  -  decompose the data into more atomic components, that is fine-grained data at 
lower levels of aggregation.

◦ Roll up  -  aggregate the data to a higher level.

• Dimensionality  -  Operational data focus on representing individual transactions, rather than the 
effects of the transactions over time. In contrast, data analysts include many data dimensions and 
are interested in how the data relate over those dimensions.

From the database designers point of view, the differences between operational and decision support data  
are  -  

Characteristic Operational Data Decision Support Data

Data currency Current operations
Real-time data 

Historic data
Snapshot of company data 
Time component (week / month / year)

Granularity Atomic-detailed data Summarized data 

Summarization level Low;  some aggregate yields High;  many aggregate yields

Data model Highly normalized
Mostly relational DBMSs

Non-normalized
Complex structures
Some relational, but mostly  
multidimensional DBMSs

Transaction type Mostly updates Mostly requests

Transaction volumes High update volumes Periodic loads and summary calculations

Transaction speed Updates are critical Retrievals are critical

Query activity Low to medium High 

Query scope Narrow range Broad range

Query complexity Simple to medium Very complex 

Data volumes Hundreds of gigabytes Terabytes to petabytes

Page  77  of  90



Chapter 15  -  Databases for Decision Support

15.3.2  Decision Support Database Requirements

A decision support database is a specialized DBMS tailored to provide fast answers to complex queries. 
There are three main requirements for a decision support database  -  

• Database  Schema  -   The  decision  support  database  schema  must  support  complex  (non-
normalized)  data  representations,  and  must  be  optimized  for  query  (read-only)  retrievals.  The 
decision support database must contain data that are aggregated and summarized.

• Data Extraction and Filtering  -  The decision support database is created largely by extracting 
data from the operational database, and by importing additional data from external sources. So, the  
DBMS must support advanced data extraction and data-filtering tools. Data-filtering capabilities must 
include the ability to check for inconsistent data or, data validation rules.

• Database Size  -  Decision support databases tend to be very large. Must be capable of supporting  
very large databases (VLDBs).

15.4  The Data Warehouse

Data warehouse  -  an integrated, subject-oriented, time-variant, nonvolatile collection of data that provides 
support for decision making. More detailed look at the components  -  

• Integrated  -   The  data  warehouse  is  a  centralized,  consolidated database that  integrates data 
derived from the entire organization and from multiple sources with diverse formats. Data integration 
implies  that  all  business  entities,  data  elements,  data  characteristics,  and  business  metrics  are 
described in the same way throughout the enterprise.

• Subject-oriented  -   Data  warehouse  data  are  arranged  and  optimized  to  provide  answers  to 
questions from diverse functional areas within a company. They are organized and summarized by 
topic, such as sales, marketing, finance, distribution, and transportation. 

• Time-variant  -  In contrast to operational data, which focus on current transactions, warehouse data 
represent  the  flow  of  data  through  time.  The  data  warehouse  can  also  contain  projected  data 
generated through statistical and other models.

• Nonvolatile  -  Once data enter the data warehouse, they are never removed. Because data are 
never deleted and new data are continually added, the data warehouse is always growing.

In summary, the data warehouse is a read-only database optimized for data analysis and query processing.

15.4.1  Data Marts

Data mart  -  is a small, single-subject data warehouse subset that provides decision support to a small  
group of people. In addition, a data mart could be created from data extracted from a larger data warehouse 
for the specific purpose of supporting faster data access to a target group or function. Data marts and data  
warehouses can coexist.

The only difference between a data mart and a data warehouse is the size and scope of the problem being 
solved. The problem definitions and data requirements are essentially the same for both.

Page  78  of  90



Chapter 15  -  Databases for Decision Support

15.4.2  Twelve Rules that Define a Data Warehouse

Rule No Description

1 The data warehouse and operational environments are separated.

2 The data warehouse data are integrated.

3 The data warehouse contains historical data over a long period of time.

4 The data warehouse data are snapshot data captured at a given point in time.

5 The data warehouse data are subject oriented.

6 The data warehouse data are mainly read-only with periodic batch updates from operational  
data. No online updates are allowed.

7 The data warehouse development life cycle differs from classical systems development. Data 
warehouse development is data-driven;  the classical approach is process driven.

8 The data warehouse contains data with several levels of detail: current detail data, old detail  
data, lightly summarized data, and highly summarized data.

9 The data warehouse environment is characterized by read-only transactions to very large data 
sets. The operational environment is characterized by numerous update transactions to a few 
data entities at a time.

10 The data warehouse environment has a system that traces data sources, transformations, and 
storage.

11 The data warehouses' metadata are a critical component of this environment. The metadata 
identify and define all  data elements.  The metadata provide for  the source,  transformation, 
integration, storage, usage, relationships, and history of each data element.

12 The  data  warehouse  contains  a  chargeback  mechanism for  resource  usage  that  enforces 
optimal use of the data by end users.

15.5  Star Schemas

Most data warehouse implementations are based on the relational model. Relational data warehouses use 
the star schema design technique to handle multidimensional data.

Star schema  -  is a data-modeling technique used to map multidimensional decision support data into a 
relational database. The star schema creates the near equivalent of a multidimensional database schema 
from the existing relational database, while preserving the relational structures on which the operational 
database is built. The star schema has four components  -  

15.5.1  Facts

Facts  -  are numeric measurements (values) that represent a specific business aspect or activity. Facts 
commonly used are units, costs, prices, and revenues.

Fact table  -  Facts are normally stored in a fact table that is the centre of the star schema. It contains facts 
that are linked through their dimensions.

Metrics  -  facts computed or derived at run time, so called to differentiate from stored facts.

15.5.2  Dimensions

Dimensions  -  are qualifying characteristics that provide additional perspectives to a given fact. Eg: Sales  
may have location, product, and time dimensions. Such dimensions are normally stored in a  dimension 
table.

Page  79  of  90



Chapter 15  -  Databases for Decision Support

15.5.3  Attributes

Each dimension table contains attributes, which are often used to search, filter, or classify facts. Dimensions  
provide descriptive characteristics about the facts through their attributes.

Eg: Sales - possible attributes for each dimension:  

Dimension Name Possible Attributes

Location Region, state, city, store.

Product Product type, product ID, brand, colour, size.

Time Year, quarter, month, week, day, time of day.

15.5.4  Attribute Hierarchies

Attribute  hierarchy  -   provides  a  top-down  data  organization  that  is  used  for  two  main  purposes: 
aggregation and drill-down / roll-up analysis. The attribute hierarchy provides the capability to perform drill-
down and roll-up searches in a data warehouse.

Eg:  Region  ->  State  ->  City  ->  Store.

The attribute hierarchy information is stored in the DBMSs data dictionary and is used by the BI tool to  
access the data warehouse properly.

15.5.5  Star Schema Representation

Facts and Dimensions are normally represented by physical tables in the data warehouse database. The fact 
table  is  related  to  each  dimension  in  a  many-to-one relationship.  Many Fact  rows  are  related  to  each  
Dimension row.

Fact and Dimension tables are related by foreign keys and are subject to the familiar primary key and foreign 
key constraints. The primary key on the "1" side, the Dimension table, is stored as part of the primary key on 
the "many" side, the Fact table. Because the Fact table is related to many Dimension tables, the primary key 
of the Fact table is a composite primary key.

Page  80  of  90



Chapter 15  -  Databases for Decision Support

15.5.6  Performance-Improving Techniques for the Star Schema

Creating a database that provides fast and accurate answers to data analysis queries is the prime objective  
of data warehouse design. The following four techniques are often used to optimize data warehouse design: 

Normalizing Dimension Tables

Dimension tables are normalized to achieve semantic simplicity and facilitate end-user navigation through 
the dimensions. Eg: if the location dimension table contains transitive dependencies among Region, State, 
and City you can revise those relationships to the 3NF.

This is known as a snowflake schema  -  type of star schema in which the Dimension tables can have their  
own Dimension tables. Usually the result of normalizing Dimension tables.

Maintaining Multiple Fact Tables That Represent Different Aggregation Levels

Query operations can be speeded up by creating and maintaining multiple Fact tables related to each level of 
aggregation (Region, State, City) in the location dimension. These aggregate tables are precomputed at the 
data-loading phase rather than at run time. The purpose of this technique is to save processor cycles at run 
time, thereby speeding up data analysis.

Denormalizing Fact Tables

Denormalizing Fact  tables  improves  data  access performance and  saves  data  storage  space.  (Storage 
space  is  becoming  less  of  an  issue  -  data  storage  costs  are  decreasing).  Denormalizing  improves 
performance by using a single record to store data that normally take many records. 

Partitioning and Replicating Tables

Table partitioning and replication are particularly important when a BI system is implemented in dispersed 
geographic areas. 

Partitioning  -  splits a table into subsets of rows or columns and places the subsets close to the client 
computer to improve data access time.

Page  81  of  90



Chapter 15  -  Databases for Decision Support

Replication  -  makes a copy of a table or partition and places it in a different location, also to improve access 
time.

No matter which performance-enhancement scheme is used, time is the most common Dimension used in 
business data analysis. it is common to have one Fact table for each level of aggregation defined within the 
time Dimension. These Fact tables must have an implicit or explicit periodicity defined.

Periodicity  -   provides information about the time span of the data stored in the table. Usually expressed as 
current year only, previous years, or all years.

15.6  Data Analytics

Data analytics  -  is a subset of BI functionality that encompasses a wide range of mathematical, statistical,  
and modeling techniques with the purpose of extracting knowledge from data. Data analytics represents 
what business managers really want from BI: the ability to extract actionable business insight from current 
events and foresee future problems or opportunities.

Data analytics discovers characteristics, relationships, dependencies, or trends in the organizatons' data, 
and then explains the discoveries, and predicts future events based on the discoveries. Data analytics tools  
can be grouped into two separate, but related and overlapping, areas  -  

• Explanatory  analytics  -   focuses  on  discovering  and  explaining  data  characteristics  and 
relationships based on existing data.

• Predictive analytics  -  focuses on predicting future data outcomes with a high degree of accuracy. 

Explanatory analytics explains the past and present, while predictive analytics forecasts the future.

15.6.1  Data Mining

Data mining  -   refers  to  analyzing massive amounts of  data  to  uncover hidden trends,  patterns,  and 
relationships;  to form computer models to simulate and explain the findings;  and then to use such models to  
support  business  decision  making.  It  focuses  on  the  discovery  and  explanation  stages  of  knowledge 
acquisition.

Data mining consists of four general phases  -  

• Data preparation
◦ Identify data set
◦ Clean data set
◦ Integrate data set

• Data analysis and classification
◦ Classification analysis
◦ Clustering and sequence analysis
◦ Link analysis
◦ Trend and deviation analysis

• Knowledge acquisition
◦ Select and apply algorithms
◦ Neural networks
◦ Inductive logic
◦ Decision trees
◦ Clustering
◦ Regression tree

Page  82  of  90



Chapter 15  -  Databases for Decision Support

◦ Nearest neighbour
◦ Visualization

• Prognosis
◦ Modeling
◦ Forecasting
◦ Prediction 

Data mining can be run in two modes  -  

• Guided  -  The end user decides what techniques to apply to the data.

• Automated  -  The data mining tool applies multiple techniques to find significant relationships.

15.6.2  Predictive Analytics

Predictive analytics  -  refers to the use of advanced mathematical, statistical, and modeling tools to predict  
future business outcomes with high degrees of accuracy.

Predictive analytics can be thought of as the next logical step after data mining - once you understand your 
data, you can use your data to predict behaviours. Many vendors are replacing the term data mining with the 
term predictive analytics.

15.7  Online Analytical Processing

Online analytical processing (OLAP)  -  is a BI style whose systems share three main characteristics  -  

• Multidimensional data analysis techniques;
• Advanced database support;
• Easy-to-use end-user interfaces.

15.7.1  Multidimensional Data Analysis Techniques

The most distinctive characteristic of OLAP tools is their capacity for multidimensional analysis, in which data 
are processed and viewed as part of a multidimensional structure.

Eg:  Data analyst would be interested in how Sales relate to other business variables, such as customers  
and time. Customers and time are viewed as different dimensions of Sales. (Pivot table is an example).

Multidimensional data analysis techniques are augmented by the following functions  -  

• Advanced data presentation functions  -  include 3D graphics, pivot tables, crosstabs, data rotation, 
and three-dimensional cubes.

• Advanced data aggregation, consolidation, and classification functions  -  allow the data analyst to 
create multiple data aggregation levels, slice and dice data, and drill-down and rool-up data across 
different dimensions and aggregation levels.

• Advanced computational functions  -  include business-oriented variables such as market share, 
period  comparisons,  sales  margins,  product  margins,  and  percentage  changes;   financial  and 
accounting  ratios,  including  profitability,  overhead,  and  cost  allocations;   and  statistical  and 
forecasting functions.

Page  83  of  90



Chapter 15  -  Databases for Decision Support

• Advanced data modeling functions  -  provide support for what-if scenarios, variable assessment, 
contributions to outcome, linear programming, and predictive modeling tools.

15.7.2  Advanced Database Support

OLAP tools must have the following advanced data access features  -

• Access to many different kinds of DBMSs, flat files, and internal and external data sources;

• Access  to  aggregated  data  warehouse  data,  as  well  as  to  the  detail  data  found  in  operational  
databases;

• Advanced data navigation features such as drill-down and roll-up;

• Rapid and consistent query response times;

• The  ability  to  map  end-user  requests,  expressed  in  either  business  or  model  terms,  to  the 
appropriate data source and then to the proper data access language (usually SQL);

• Support for very large databases.

15.7.3  Easy-to-Use End-User Interfaces

The end-user analytical interface is one of the most critical OLAP components. Advanced OLAP features 
become more useful when access to them is kept simple.

Most OLAP vendors have closely integrated their systems with spreadsheets such as MS Excel. Users gain 
access to advanced data analysis features by using familiar programs and interfaces, and additional training 
and development costs are minimized.

15.7.4  OLAP Architecture

An OLAP system has three main architectural components  -  

• Graphical user interface;
• Analytical processing logic;
• Data-processing logic.

These components can exist on the same computer, or be distributed among several computers. Whatever  
the arrangement of the OLAP components, multidimensional data must be used. Opinion is divided, some 
favour  the  use  of  relational  databases,  others  argue  that  specialized  multidimensional  databases  are 
superior.

15.7.5  Relational OLAP

Relational  online analytical  processing  (ROLAP)  -   provides OLAP functionality by using relational 
databases and familiar relational query tools to store and analyze multidimensional data.  This approach 
builds on existing relational technologies and represents a natural extension to companies that already use 
relational database management systems.

ROLAP adds the following extensions to traditional RDBMS technology  -  

• Multidimensional data schema support within the RDBMS;

Page  84  of  90



Chapter 15  -  Databases for Decision Support

• Data access language and query performance optimized for multidimensional data;

• Support for very large databases (VLDBs).

Multidimensional data schema support within the RDBMS

Relational  technology uses normalized tables to  store  data  -  stumbling block to  use in  OLAP systems. 
ROLAP uses  a  special  design  technique  -  star  schema -  that  enables  RDBMS technology  to  support 
multidimensional data representations.

ROLAP adds support for the star schema when familiar query tools are used, and provides advanced data 
analysis functions and improves query optimization and data visualization methods.

Data Access Language and Query Performance Optimized for Multidimensional data

Another criticism of relational databases is that SQL is not suited for performing advanced data analysis.  
Most decision support data requests require the use of multiple-pass SQL queries or multiple nested SQL 
statements. 

ROLAP extends SQL so that it  can differentiate between access requirements for data warehouse data 
(based on the star  schema),  and operational  data  (normalized tables).  A ROLAP system therefore can 
generate the SQL code required to access the star schema data.

Support for Very Large Databases

When a relational database is used in a decision support role, it must be able to store very large amounts of  
data. Both the storage capacity and the process of loading data into the warehouse are crucial.  Therefore  
the RDBMS must have the proper tools to import, integrate, and populate the data warehouse with data.

ROLAP is a logical choice for companies that already use relational databases for their operational data.  
Most  current  RDBMS  vendors  have  extended  their  products  to  support  data  warehouses  and  OLAP 
capabilities.
 

15.7.6  Multi-Dimensional OLAP

Multidimensional  online  analytical  processing  (MOLAP)   -   extends  OLAP  functionality  to 
multidimensional database management systems  (MDBMSs).  An MDBMS uses proprietary techniques to 
store data in matrix-like n-dimensional arrays. MOLAPs premise is that multidimensional databases are best 
suited to manage, store, and analyze multidimensional data.

Data cube  -  MDBMS users visualize the stored data as a three-dimensional cube. A data cube can grow to 
n number of dimensions - hypercube. Data cubes are created by extracting data from operational databases 
or the data warehouse. An important characteristic is that data cubes are static, they must be created before 
they can be used.

Data cube creation is critical and requires in-depth front-end design work. To speed up access, data cubes  
are normally held in memory in the cube cache.

Multidimensional data analysis is also affected by how the database system handles sparsity.

Sparsity  -  measures the density of the data held in the data cube, it is computed by dividing the total  
number of actual values in the cube by its total number of cells.

Page  85  of  90



Chapter 15  -  Databases for Decision Support

Because the data cubes'  dimensions are predefined,  not  all  cells are populated,  some cells are empty.  
Multidimensional databases must handle sparsity effectively to reduce processing overhead and resource 
requirements.

15.7.7  Relational vs Multidimensional OLAP

Characteristic ROLAP MOLAP

Schema Uses star schema.
Additional  dimensions  can  be  added 
dynamically.

Uses data cubes.
Multidimensional arrays, row stores, column 
stores.
Additional dimensions require re-creation of 
the data cube.

Database size Medium to large. Large.

Architecture Client / server.
Standards-based.

Client / server.
Open or proprietary, depending on vendor.

Access Supports ad hoc requests.
Unlimited dimensions.

Limited to predefined dimensions.
Proprietary access languages.

Speed Good with small data sets;
average for medium to large data sets.

Faster  for large data sets  with  predefined 
dimensions. 

15.8  SQL Extensions for OLAP

Some new SQL extensions have been created to support OLAP-type data manipulation.
Two extensions to the GROUP BY clause are particularly useful  -  

15.8.1  The Rollup Extension

The ROLLUP extension is used with the GROUP BY clause to generate aggregates by different dimensions.

SELECT  column1, column2 ....

FROM  table 1, table2 ...

[WHERE condition]

GROUP BY ROLLUP ( column1, column2 ...)

[HAVING condition]

[ORDER BY  column1, column2 ...]

Order within GROUP BY ROLLUP is important - last column in the list will generate a grand total, all other  
columns will generate sub-totals.

Eg: Within a location hierarchy can use ROLLUP to generate sub-totals by Region, State, City, and Store.

Page  86  of  90



Chapter 15  -  Databases for Decision Support

15.8.2  The Cube Extension

The CUBE extension is used within the GROUP BY clause to generate aggregates by the listed columns,  
including the last one.
SELECT  column1, column2 ...

FROM  table1, table2 ...

[WHERE condition]

GROUP BY CUBE (column1, column2 ...)

[HAVING condition]

[ORDER BY column1, column2 ...]

The CUBE extension is useful when you want to compute all possible sub-totals within groupings based on  
multiple dimensions.

15.8.3  Materialized Views

Creating multiple summary Fact tables that use GROUP BY queries with multiple join tables could become 
quite resource-intensive.  Normally,  when new data is added to the base Fact  tables, the summary Fact 
tables have to be recreated. This requires that the SQL code be run again to re-create all summary rows, 
even  when  only  a  few  rows  need  to  be  changed.  To  save  query  time,  most  database  vendors  have 
implemented additional functions to manage aggregate summaries more efficiently.

Materialized view  -  is a dynamic table that not only contains the SQL query command to generate the 
rows, it  stores the actual rows. The materialized view is created the first time the query is run, and the 
summary rows are stored in the table. The materialized view rows are automatically updated when the base 
tables are updated.

--ooOoo--

Page  87  of  90



Chapter 15  -  Databases for Decision Support

Key  Terms

• algorithms  -  A process or set of operations in a calculation. The most common algorithms used in 
data  mining  are  based  on  neural  networks,  decision  trees,  rules  induction,  genetic  algorithms, 
classification and regression trees, memory-based reasoning, and nearest neighbour.

• attribute hierarchy  -  A top-down data organization that is used for two main purposes:  aggregation 
and drill-down / roll-up data analysis.

• business intelligence (BI)  -  A comprehensive, cohesive and integrated set of tools and processes 
used  to  capture,  collect,  integrate,  store,  and  analyze  data  with  the  purpose  of  generating  and 
presenting information to support business decision making.

• cube cache  -  In a multi-dimensional OLAP, the shared, reserved memory area where data cubes are  
held. Using the cube cache assists in speeding up data access.

• dashboard  -  In business intelligence, a Web-based system that presents key business performance 
indicators or information in a single, integrated view with clear and concise graphics.

• data analytics  -   A subset of  business intelligence functions that  encompasses a wide range of 
mathematical,  statistical,  and modelling techniques with the purpose of  extracting knowledge from 
data.

• data cube  -  The multi-dimensional data structure used to store and manipulate data in a multi-
dimensional DBMS. The location of each data value in the data cube is based on its x-, y-, and z-axes.  
Data cubes are static, meaning they must be created before they are used, so they cannot be created 
by an ad hoc query.

• data mart  -  A small, single-subject data warehouse subset that provides decision support to a small 
group of people.

• data mining  -  A process that employs automated tools to analyze data in a data warehouse and 
other sources, and to proactively identify possible relationships and anomalies.

• data warehouse  -  An integrated, subject-oriented, time-variant, non-volatile collection of data that 
provides support for decision making, according to Bill Inmon, the acknowledged "father of the data 
warehouse".

• decision support system (DSS)  -  An arrangement of computerized tools used to assist managerial 
decision making within a business. 

• dimension tables  -  In a data warehouse, tables used to search, filter, or classify facts within a star 
schema. The fact table is in a one-to-many relationship with dimension tables.

• dimensions  -  In a star schema design, qualifying characteristics that provide additional perspectives 
to a given fact.

• drill down  -  To decompose data into more atomic components - that is, data at lower levels of  
aggregation.  This  approach  is  used  primarily  in  a  decision  support  system  to  focus  on  specific  
geographic areas, business types, and so on. See also roll up.

• explanatory analytics  -   Data analysis that  provides ways to discover relationships,  trends, and 
patterns among data.

Page  88  of  90



Chapter 15  -  Databases for Decision Support

• extraction, transformation, and loading (ETL)  -  In a data warehousing environment, the integrated 
processes of getting data from original sources into the data warehouse. ETL includes retrieving data 
from original data sources (extraction), manipulating the data into an appropriate form (transformation),  
and storing the data in the data warehouse (loading).

• fact table  -  In a data warehouse, the star schema table that contains facts linked and classified 
through their common dimensions. A fact table is in a one-to-many relationship with each associated 
dimension table.

• facts  -  In a data warehouse, the measurements (values) that represent a specific business aspect or 
activity. For example, sales figures are numeric measurements that represent product or service sales.  
Facts commonly used in business data analysis include units, costs, prices, and revenues.

• governance  -  In business intelligence, the methods for controlling and monitoring business health  
and promoting consistent decision making.

• key performance indicators  (KPIs)  -  In business intelligence, quantifiable numerical scale-based 
measurements that assess a companys' effectiveness or success in reaching strategic and operational 
goals. Examples of KPI are product turnovers, sales by promotion, sales by employee, and earnings 
per share.

• master data management (MDM)  -  In business intelligence, a collection of concepts, techniques, 
and processes for the proper identification, definition, and management of data elements within an 
organization.

• materialized view  -  A dynamic table that not only contains the SQL query command to generate  
rows, but stores the actual rows. The materialized view is created the first time the query is run and the  
summary rows are stored in the table. The materialized view rows are automatically updated when the 
base tables are updated.

• metrics  -  In a data warehouse, numeric facts that measure a business characteristic of interest to the  
end user.

• multi-dimensional database management system (MDDBMS)  -  A database management system 
that uses proprietary techniques to store data in matrix like arrays of n dimensions known as cubes.

• multi-dimensional  online analytical  processing (MOLAP)   -   An extension  of  on-line  analytical 
processing to multi-dimensional database management systems.

• online  analytical  processing (OLAP)   -   Decision  support  system  (DSS)  tools  that  use  multi-
dimensional data analysis techniques.  OLAP creates an advanced data analysis environment that 
supports decision making, business modelling, and operations research.

• partitioning  -  The process of splitting a table into subsets of rows or columns.

• periodicity  -  Information about the time span of data stored in a table, usually expressed as current  
year only, previous years, or all years.

• portal  -  In terms of business intelligence, a unified, single point of entry for information distribution.

• predictive analysis  -   Data analysis  that  uses advanced statistical  and modelling techniques to 
predict future business outcomes with great accuracy.

Page  89  of  90



Chapter 15  -  Databases for Decision Support

• relational  online  analytical  processing (ROLAP)   -   Analytical  processing  functions  that  use 
relational databases and familiar relational query tools to store and analyze multi-dimensional data.

• replication  -  The process of creating and managing duplicate versions of a database. Replication is  
used to place copies in different locations and to improve access time and fault tolerance.

• roll up  -  In SQL, an OLAP extension used with the GROUP BY clause to aggregate data by different 
dimensions. Rolling upcthe data is the exact opposite of drilling down the data. See also drill down.

• slice and dice  -  The ability to cut slices off a data cube (drill down or drill up) to perform a more  
detailed analysis.

• snowflake schema  -  A type of star schema in which dimension tables can have their own dimension  
tables. The snowflake schema is usually the result of normalizing dimension tables.

• sparsity  -  In multi-dimensional data analysis, a measurement of the data density held in the data  
cube.

• star schema  -  A data modelling technique used to map multi-dimensional decision support data into  
a relational database. The star schema represents data using a central table known as a fact table in a 
1:M relationship with one or more dimension tables.

• very large databases (VLDBs)  -  Databases that contain huge amounts of data - gigabyte, terabyte, 
and petabyte ranges are not unusual.

--ooOoo--

Page  90  of  90


