ECONOMETRIC TECHNIQUE

DISCUSSION CLASS 2
LECTURER: SENIA NHAMO
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LEARNING AND TEACHING

U2 Lectures and accompanying notes
QOffice hours (phone to make an appointment)
Q012 429 4093

QO Text book: Studenmund, A.H (2007) Using
Econometrics. A Practical Guide, Fifth Edition,
Pearson

QMyUnisa

QEmail : nhamos@unisa.ac.za

EXAMINATION

0 See TL201/2010
= May/June 2010 exam paper
Q0 2 hours / 100 marks
OSection A: Theory
= Answer all 4 questions
"4 x15=60

= The questions correspond to a large extent to the
questions at the end of each study unit
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Overview of the course

* What is econometrics? (Chapters 1-2)
« Statistics (Chapters 3-5, 16)

+ Probability Distribution of /3

» Hypothesis testing

» Specification (chapters 6-7)

» Econometric problems (Chapters 8-11)
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ASSESSMENT

U2 Assignments (10% weighting)
UExamination (90% weighting)
U Assignment 1 is compulsory
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EXAMINATION (continued)

OSection B: Applications
= Answer 2 of 3 questions
=2x20=40
= Regression results to interpret and/or to evaluate
= hypotheses testing
= econometric problems / remedy
QO Compile specifications
= any functional form eg Y=a+b.log(X)
= lags, intercept dummy variables, slope dummy variables
QFew calculations

= rather evaluate a set of regression results, identify errors,
test coefficients for statistical significance etc
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EXAMINATION (continued)

U No multiple-choice questions

U Formulae sheet will be provided.
See p249-250 of study guide.

O Statistical tables are provided for statistical
testing

U May use non-programmable calculator

What is Econometrics?
» Econometrics literally means “economic
measurement”

* Itis the quantitative measurement and analysis of
actual economic and business phenomena—and so
involves:

— economic theory

— Statistics

— Math

— observation/data collection
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* Economic theory can give us the direction of a
change, e.g. the change in the demand for dvd’s
following a price decrease (or price increase)

» But what if we want to know not just “how?” but
also “how much?”

* Then we need:
— A sample of data
— A way to estimate such a relationship

- one of the most frequently ones used is
regression analysis

2010/09/20

CHAPTER 1

AN OVERVIEW OF
REGRESSION ANALYSIS

MAJOR USES OF ECONOMETRICS

U Describing economic reality

QO Structural analysis

U Testing hypothesis about economic theory
U Policy evaluation

U Forecasting future economic activity

e
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» Formally, regression analysis is a statistical
technique that attempts to “explain” movements in
one variable, the dependent variable, as a function
of movements in a set of other variables, the
independent (or explanatory) variables, through
the quantification of a single equation
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+ Q=f(P, P, Yd) (1.1)
* Here, Q is the dependent variable and P, P, Yd are
the independent variables

» Don’t be deceived by the words dependent and
independent, however

— A statistically significant regression result does not
necessarily imply causality

— We also need:
» Economic theory
* Common sense

Single-Equation Linear Models (cont.)

* Is (1.2) a complete description of origins of variation in Y?

* No, at least four sources of variation in Y other than the
variation in the included Xs:

* Other potentially important explanatory variables may be
missing
(e.g., X, and X;)

* Measurement error

* Incorrect functional form

« Purely random and totally unpredictable occurrences

* Inclusion of a “stochastic error term” () effectively “takes
care” of all these other sources of variation in Y that are NOT
captured by X, so that (1.2) becomes:

Y=By+BiX+e (13)
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+ Subscript “i” for data on individuals (so called “cross
section” data)

+ Subscript “t” for time series data (e.g., series of years,
months, or days—daily exchange rates, for example )

+ Subscript “it” when we have both (for example,
“panel data”)
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Single-Equation Linear Models

» The simplest example is:
Y =B+ BX (12)
» The Bs are denoted “coefficients”
— By is the “constant” or “intercept” term

— B, is the “slope coefficient”’: the amount that Y will
change when X increases by one unit; for a linear
model, 3, is constant over the entire function

Data types

OTo estimate the parameters of interest, obtain the
necessary data. Data source could involve time series,
cross-sectional or panel data.

U Time series data are collected over time for the same
country or other single aggregate economic unit

[ Cross-sectional data are collected for a sample over
individuals, households, firms or other disaggregate
economic entity at a point in time

O Panel data contains elements of both time series and
cross-sectional data

e
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The Estimated Regression Equation

* The regression equation considered so far is the “true”—but unknown—
theoretical regression equation

Instead of “true,” might think about this as the population regression vs. the
sample/estimated regression

» How do we obtain the empirical counterpart of the theoretical regression
model (1.3)?

It has to be estimated
« The empirical counterpart to (1.3) is:

1 =5+Bx, (1.4)

» The signs on top of the estimates are denoted “hat,” so that we have “Y-hat,”
for example
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* Regression analysis

* Dependent variable

+ Independent (or explanatory) variable(s)
+ Causality vs correlation

* Linear

* Intercept term CHAPTER 2
+ Slope coefficient
» Multivariate regression model ORDINARY LEAST SQUARES
« Stochastic error term vs Residual term

» Time series vs cross sectional data

UNISA &=

Estimating Single-Independent-Variable Models with Estimating Single-Independent-Variable Models with OLS
OLS (cont.)

» Recall that the objective of regression analysis is to * One of the most widely used methods is Ordinary
start from: Least Squares (OINS\
. Yi = Bo + BiXi + ¢ 2.1) . OLS minimizes Y&  (i=1,2,...,N) (2.3)
i i=1
i, ureUe] thAe us? i d?ta, 1o gty * Or, the sum of squared deviations of the vertical
* Y; = Bo t B1X; (2.2) distance between the residuals (i.e. the estimated
* Recall that equation 2.1 is purely theoretical, while error terms) and the estimated regression line
equation (2.2) is it empirical counterpart + We also denote this term the “Residual Sum of
* How to move from (2.1) to (2.2)? Squares” (RSS)
_— e
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Estimating Single-Independent-Variable Models Estimating Single-Independent-Variable Models
with OLS (cont. with OLS (cont.

n o N How does OLS work?
+ Similarly, OLS minimizes: Z (Y _ YA ) 2
- i i * First recall from (2.3) that OLS minimizes the sum of
the squared residuals
* Whyuse OLS? » Next, it can be shown that the coefficients that ensure
* Relatively easy to use q A q )
* The goal of minimizing RSS is intuitively / theoretically that for the case OfJUSt one mdependent variable are:
appealing N _ _ 2.4
« This basically says we want the estimated regression 2 -X (-] (24)
equation to be as close as possible to the observed data B _i=
» OLS estimates have a number of useful characteristics I N =35
_El(xi =X
=
5o & 2.5
Bo=Y — BsX (22)
e e
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Estimating Multivariate Regression Models with
OLS

* In the “real world” one explanatory variable is not enough
* The general multivariate regression model with K independent
variables is:
Yi=Bo+ BeXyi + BXpt ..+ BeX t & (1=12,...,N)
(1.13)
» Biggest difference with single-explanatory variable regression
model is in the interpretation of the slope coefficients
— Now a slope coefficient indicates the change in the
dependent variable associated with a one-unit increase in
the explanatory variable holding the other explanatory
variables constant

UNISA &=

o

Figure 2.3 Decomposition of the Variance inY

The variation of Y around its mean (Y — Y) can be decomposed into two parts:

(1) (¥; — ). the difference between the estimated value of Y(¥) and the mean value of
Y (Y); and (2) (Y; — ¥;). the difference between the actual value of Y and the estimated
value of Y.

The adjusted coefficient of determination

» A major problem with R? is that it can never decrease
if another independent variable is added

« An alternative to R2 that addresses this issue is the
adjusted R? :

Se2/(N - K — 1)
S -VYN-1)

R? =

(2.15)

Where N — K — 1 = degrees of freedom
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N
TSS = X, (Y; — V)2
i=1
S -V=3SE -V 2

+ TSS =ESS +RSS
« This is usually called the decomposition of variance

_—
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Describing the Overall Fit of the Estimated Model

» The simplest commonly used measure of overall fit is
the coefficient of determination, R

2 ESS _ . RSS _ _726% 214
TOTSS 1SS S(Y; - )2 )

« Since OLS selects the coefficient estimates
that minimizes RSS, OLS provides the largest
possible R? (within the class of linear models)

_——
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Adjusted R2

O Why is adjusted R-squared better?

O When K increases, RSS surely drops, but the denominator (n-
K-1) also drops. Now if the drop in RSS is not large enough,
RSS/(n-K-1) will actually increase so that adjusted R-squared
will decrease.

Q In other words, adjusted R-squared penalizes the measure of fit
in adding an explanatory variable if that variable does not
contribute much toward explaining the variable in Y.

_~——
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Key Terms from Chapter 2

* Ordinary Least Squares (OLS)

* Interpretation of a multivariate regression
coefficient

» Total sums of squares

» Explained sums of squares

* Residual sums of squares

« Coefficient of determination, R2

» Simple correlation coefficient, r

* Degrees of freedom

» Adjusted coefficient of determination , R2

UNISA =

Steps in Applied
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CHAPTER 3

LEARNING TO USE REGRESSION
ANALYSIS

Step 1: Review the therature and Develop the

» The first step is choosing the dependent variable — this step
is determined by the purpose of the research

 After choosing the dependent variable, it's logical to follow
the following sequence:

1. Review the literature and develop the theoretical model

2. Specify the model: Select the independent variables and
the functional form

3. Hypothesize the expected signs of the coefficients
4. Collect the data. Inspect and clean the data

5. Estimate and evaluate the equation

6. Document the results

Step 2: Specity the Model: Independent Variables

] Ol'Mm
* After selectlng the dependent variable, the
specification of a model involves choosing the
following components:
1. the independent variables and how they should
be measured,

2. the functional (mathematical) form of the
variables, and

3. the properties of the stochastic error term

» Perhaps counter intuitively, a strong theoretical foundation is
the best start for any empirical project

» Reason: main econometric decisions are determined by the
underlying theoretical model

» Useful starting points:

— Journal of Economic Literature or a business oriented
publication of abstracts

— Internet search, including Google Scholar

— EconlLit, an electronic bibliography of economics literature
(for more details, go to www.EconlLit.org)
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Functional Form (cont.

* A mistake in any of the three elements results in a
specification error

» For example, only theoretically relevant explanatory
variables should be included

» Even so, researchers frequently have to make choices
—also denoted imposing their priors

* Example:

» when estimating a demand equation, theory informs
us that prices of complements and substitutes of the
good in question are important explanatory
variables

* But which complements—and which su




Step 3: Hypothesize the Expected Signs ot the

» Once the variables are selected, it's important to
hypothesize the expected signs of the regression
coefficients

+ Example: demand equation for a final consumption
good

« First, state the demand equation as a general function:
-+ - +
Q4 =f(P, Y, P, Py) + ¢ (3.2)

» The signs above the variables indicate the
hypothesized sign of the respective regression
coefficient in a linear model
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Step 4: Collect the Data & Inspect and Clean the

DEIE Ol
» Estimate model using the data in Table 2.2 to get:

* Inspecting the data—obtain a printout or plot (graph)
of the data

* Reason: to look for outliers

— An outlier is an observation that lies outside the
range of the rest of the observations

« Examples:
— Does a student have a 7.0 GPA on a 4.0 scale?
— Is consumption negative?
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Step 6: Document the Results

+ A standard format usually is used to present estimated
regression results:

Y, = 103.40 + 6.38X;

(0.88)
t=722 (3:3)

N=20 R?=.73
« The number in parentheses under the estimated
coefficient is the estimated standard error of the
estimated coefficient, and the t-value is the one used
to test the hypothesis that the true value of the
coefficient is different from zero (more on this later!)
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Step 4: Collect the Data & Inspect and Clean the
. CALCA

* A general rule regarding sample size is “the more
observations the better”

« as long as the observations are from the same
general population!

» The reason for this goes back to notion of degrees of
freedom

* When there are more degrees of freedom:
* Every positive error is likely to be balanced by a
negative error
» The estimated regression coefficients are
estimated with a greater deal of precision

UNISA
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Step 5: Estimate and Evaluate the Equation

* Once steps 1—4 have been completed, the estimation
part is quick

—using Eviews or Stata to estimate an OLS
regression takes less than a second!

» The evaluation part is more tricky, however, involving
answering the following questions:

— How well did the equation fit the data?

— Were the signs and magnitudes of the estimated
coefficients as expected?

» Afterwards may add sensitivity analysis

UNISA|

Key Terms from Chapter 3

» The six steps in applied regression analysi
» Cross-sectional data set

» Specification error

» Degrees of freedom
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CHAPTER 17

STATISTICAL PRINCIPLES

andard veviation

The expected value (or mean) of a discrete random variable X
is a weighted average of all possible values of X, using the
probability of each X value as weights

u=E[X]= inP[xi]

« the variance of a discrete random variable X is a weighted
average, for all possible values of X, of the squared difference
between X and its expected value, using the probability of each
X value as weights:

0 =E[(X - uf]= X (X, ~ uPPIX]

» The standard deviation o is the square root of the variance
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Figure 1/.6

Density

=} 2 -1 0 1 2 z

Figure 17.6 The Normal Distribution
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Probability

* Arandom variable X is a variable whose numerical value is
determined by chance, the outcome of a random phenomenon
— A discrete random variable has a countable number of
possible values, such as 0, 1, and 2
— A continuous random variable, such as time and distance,
can take on any value in an interval
» A probability distribution P[X] for a discrete random variable
X assigns probabilities to the possible values X, X,, and so on
» For example, when a fair six-sided die is rolled, there are six
equally likely outcomes, each with a 1/6 probability of occurring

Continuous Random Variables

* Our examples to this point have involved discrete random
variables, for which we can count the number of possible
outcomes:

— The coin can be heads or tails; the die can be 1, 2, 3, 4, 5, or
6

» For continuous random variables, however, the outcome can
be any value in a given interval
— For example, Figure 16.2 shows a spinner for randomly
selecting a point on a circle
« A continuous probability density curve shows the probability
that the outcome is in a specified interval as the corresponding
area under the curve

— This is illustrated for the case of the spinner in Figure 16.3
e
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The Normal Distribution (cont.)

« The central limit theorem is a very strong result for
empirical analysis that builds on the normal
distribution

* The central limit theorem states that:

— if Zis a standardized sum of N independent, identically
distributed (discrete or continuous) random variables with a
finite, nonzero standard deviation, then the probability
distribution of Z approaches the normal distribution as N
increases




Sampling Distributions

» The sampling distribution of a statistic is the probability
distribution or density curve that describes the population of
all possible values of this statistic

— For example, it can be shown mathematically that if the
individual observations are drawn from a normal
distribution, then the sampling distribution for the sample
mean is also normal

— Even if the population does not have a normal distribution,
the sampling distribution of the sample mean will approach a
normal distribution as the sample size increases

I ne Standard peviation ot the Sampling

D bution
» One way of gauging the accuracy of an estimator is with its
standard deviation:
— If an estimator has a large standard deviation, there is a
substantial probability that an estimate will be far from its
mean

— If an estimator has a small standard deviation, there is a
high probability that an estimate will be close to its mean

CHAPTER 4

THE CLASSICAL MODEL
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The Mean of the Sampling Distribution

» A sample statistic is an unbiased estimator of a population
parameter if the mean of the sampling distribution of this
statistic is equal to the value of the population parameter

» Because the mean of the sampling distribution of X is y,

X is an unbiased estimator of y

Key Terms from Chapter 17

Random variable
Probability distribution
Expected Value
Mean

* Variance
Standard deviation
Population
Sample
Sampling distribution
Population mean
Sample mean

Pop

Sample standard deviation
Central limit theorem
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The Classical Assumptions

* The classical assumptions must be met in order for OLS estimators to be
the best available

The seven classical assumptions are:

I.  The regression model is linear, is correctly specified, and has an
additive error term

Il.  The error term has a zero population mean
lll. All explanatory variables are uncorrelated with the error term

IV. Observations of the error term are uncorrelated with each other
(no serial correlation)

V. The error term has a constant variance (no heteroskedasticity)
VI. No explanatory variable is a perfect linear function of any other
explanatory variable(s) (no perfect multicollinearity)

The error term is normally distributed (this assumption is optional
but usually is invoked)

VIIL

_——
e
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I: linear, correctly specified, additive error term

» Consider the following regression model:
Yi=Bo + BaXy + BoXp+ .+ BXy & (4.1)
* This model:
—is linear (in the coefficients)
— has an additive error term

« If we also assume that all the relevant explanatory
variables are included in (4.1) then the model is also
correctly specified

2010/09/20

II: Error term has a zero population mean

As was pointed out in Section 1.2, econometricians
add a stochastic (random) error term to regression
equations

Reason: to account for variation in the dependent
variable that is not explained by the model

The specific value of the error term for each
observation is determined purely by chance

I1I: All explanatory variables are uncorrelated with
Ne erro I

* If not, the OLS estimates would be likely to attribute to

the X some of the variation in Y that actually came

from the error term

For example, if the error term and X were positively

correlated then the estimated coefficient would

probably be higher than it would otherwise have been

(biased upward)

+ This assumption is violated most frequently when a
researcher omits an important independent variable
from an equation

UNISA &=

IV: No serial correlation of
- 0 =1ann

If a systematic correlation does exist between one observation

of the error term and another, then it will be more difficult for

OLS to get accurate estimates of the standard errors of the

coefficients
This assumption is most likely to be violated in time-series
models:

— An increase in the error term in one time period (a random
shock, for example) is likely to be followed by an increase in
the next period

If, over all the observations of the sample ¢, is correlated with

g, then the error term is said to be serially correlated (or auto-

correlated), and Assumption IV is violated

Violations of this assumption are considered in more detail in
Chapter 9

e
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V: Constant variance / No heteroskedasticity in

The error term must have a constant variance

That is, the variance of the error term cannot change
for each observation or range of observations

If it does, there is heteroskedasticity present in the
error term

An example of this can bee seen from Figure 4.2

UNISA &=

kigure 4.2 An Error Ierm VWhose Variance

Large es Associated
with Large Zs .

E(YIX) = By+ BiZ

Small es
Associated with
Small Zs
0 z

Figure 4.2 An Error Term Whose Variance Increases as Z Increases
(Heteroskedasticity)

One example of Classical Assumption V not being met is when the variance of the error
term increases as Z increases. In such a situation (called heteroskedasticity), the obser-
vations are on average farther from the true regression line for large values of Z than
they are for small values of Z.

10



VI: No perfect multicollinearity

» Perfect collinearity between two independent
variables implies that:
— they are really the same variable, or
—one is a multiple of the other, and/or

—that a constant has been added to one of the
variables

+ Example:
+ GDP and MAF in assignment 2

The Sampling Distribution ofE

* We saw earlier that the error term follows a probability
distribution (Classical Assumption VII)
» But so do the estimates of !
— The probability distribution of these ﬁvalues across different
samples is called the sampling distribution
of
» We will now look at the properties of the mean, the
variance, and the standard error of this sampling
distribution
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Properties of the Variance

« Just as we wanted the mean of the sampling distribution to be
centered around the true population 3, so too it is desirable for
the sampling distribution to be as narrow (or precise) as
possible.

— Centering around “the truth” but with high variability might be of
very little use.

» One way of narrowing the sampling distribution is to increase
the sampling size (which therefore also increases the degrees
of freedom)

» These points are illustrated in Figures 4.4 and 4.5
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VII: The error term is normally distributed

» Basically implies that the error term follows a
bell-shape

« Strictly speaking not required for OLS estimation
(related to the Gauss-Markov Theorem: more on this
in Section 4.3)

« Its major application is in hypothesis testing, which
uses the estimated regression coefficient to
investigate hypotheses about economic behavior (see
Chapter 5)

Properties of the Mean

» A desirable property of a distribution of estimates in that its
mean equals the true mean of the variables being estimated

* Formally, an estimator [§ is an unbiased estimator if its
sampling distribution has as its expected value the true value of
B
* We also write this as follows:

E(B) = B

(4.9)

» Similarly, if this is not the case, we say that the estimator is
biased

UNISA [z
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Figure 4.4 :

q - - )
) DUUONS O
Distribution B
(unbiased, small variance)
Distribution A
(unbiased, large variance)
Distribution C
(biased, medium variance)

| /
I

|

|

I

|

I

I

I

|

1

True.

[

Figure 4.4 Distributions of

Different distributions of (8 can have different means and variances. Distibutions A and

B, for example, are both unbiased, but distribution A has a larger variance than does dis-

wribution B. Distribution C has a smaller variance than distribution A, but it is biased.

UNISA E=
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Figure 4.5 Sampling Distribution of 3 for Various Observations (N)

As the size of the sample increases, the variance of the distribution of fs calculated
from that sample tends 1o decrease. In the extreme case (not shown), a sample equal to
the population would yield only an estimate equal to the mean of that distribution,
which (for unbiased estimators) would equal the true B, and the variance of the esti-

mates would be zero.

anr=ie

» The Gauss-Markov Theorem states that:

— Given Classical Assumptions | through VI (Assumption VII,

normality, is not needed for this theorem), the Ordinary
Least Squares estimator of —k is the minimum variance
estimator from among the set of all linear unbiased

estimators of —k,
fork=0,1,2,...,K

» We also say that “OLS is BLUE”: “Best (meaning
minimum variance) Linear Unbiased Estimator”
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Properties or the

» The standard error of the estimated coefficient, SE(ﬁ
), is the square root of the estimated variance of the
estimated coefficients.

* Hence, it is similarly affected by the sample size and
the other factors discussed previously

— For example, an increase in the sample size will decrease
the standard error

— Similarly, the larger the sample, the more precise the
coefficient estimates will be

UNISA &=
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Table 4.1 Notation Conventions

Population Parameter
(True Values, but Unobserved)

Name Symbol(s)

Regression Br
coefficient

Expected value of E(By)
the estimated
coefficient

Variance of o2 or VAR(g))
the error
term

Estimate
(Observed from Sample)

Name Symbol(s)

Estimated regression Bk
coefficient

Estimated variance s?org?
of the error
term
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Ine Gauss-Markov Iheorem and the

* The Gauss-Markov Theorem only requires the first six classical
assumptions

« If we add the seventh condition, normality, the OLS coefficient
estimators can be shown to have the following properties:
— Unbiased: the OLS estimates coefficients are centered around the true
population values
Minimum variance: no other unbiased estimator has a lower variance
for each estimated coefficient than OLS

Consistent: as the sample size gets larger, the variance gets smaller,
and each estimate approaches the true value of the coefficient being
estimated

Normally distributed: when the error term is normally distributed, so

are the estimated coefficients—which enables various statistical tests
requiring normality to be applied (we'll get back to this in Chapter 5)

-~
e
e scnces
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» Standard normal distribution
- SE(p),

* Unbiased estimator

* BLUE

» Sampling distribution

Key Terms from Chapter 4

* The classical assumptions
» Classical error term

UNISA Z=.
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CHAPTER 5

HYPOTHESIS TESTING

Classical Null and Alternative Hypotheses

» The researcher first states the hypotheses to be tested
* Here, we distinguish between the null and the
alternative hypothesis:

— Null hypothesis (“H,”): the outcome that the
researcher does not expect (almost always includes
an equality sign)

— Alternative hypothesis (“H,”): the outcome the
researcher does expect

» Example:
Hy: B < 0 (the values you do not expect)
Ha: B > 0 (the values you do expect)

UNISA &=

rlgwe O. 1 REJEULIIIQ d 11rue iNull nypuulesw
Is a Type | Error

Distribution of Bs
Centered Around 0

|
I
I
|
I
I
|
I
I
|
I
I
1
0

B Quite Positive

Figure 5.1 Rejecting a True Null Hypothesis Is a Type | Error

If B = 0, but you observe a f that is very positive, you might reject a true null
hypothesis, Hy: B = 0, and conclude incorrectly that the alternative hypothesis
Hpi B = 0 s true.

2010/09/20

What Is Hypothesis Testing?

« Hypothesis testing is used in a variety of settings
— The Food and Drug Administration (FDA), for
exlample, tests new products before allowing their
sale
* If the sample of people exposed to the new
product shows some side effect significantly more
frequently than would be expected to occur bP/
chance, the FDA is likely to withhold approval of
marketing that product
— Similarly, economists have been statistically
testing various relationships, for example that
between consumption and income
* Note here that while we cannot prove a given
hypothesis (for example the existence of a given
relationship), we often can reject a given hypothesis
(again, for example, rejecting the existence of a given

relationship) UNISA
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Type | and Type Il Errors

» Two types of errors possible in hypothesis testing:
— Type I: Rejecting a true null hypothesis
— Type lI: Not rejecting a false null hypothesis
» Example: Suppose we have the following null and
alternative hypotheses:
Hy:B<0
Ha:B>0
— Even if the true B really is not positive, in any one
sample we might still observe an estimate of {3 that
is sufficiently positive to lead to the rejection of the
null hypothesis
» This can be illustrated by Figure 5.1
-~
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Type | and Type Il Errors (cont.)

 Alternatively, it's possible to obtain an estimate
of B that is close enough to zero (or negative)
to be considered “not significantly positive”

» Such a result may lead the researcher to

“accept” the null hypothesis that § < 0 when in

truth >0

This is a Type Il Error; we have failed to reject a

false null hypothesis!

» This can be illustrated by Figure 5.2

_——
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Figure 5.2 Fallure 1o Reject a False Null

Distribution of Bs
Centered Around |

8 Negative
(But Close to 0)

Figure 5.2 Failure to Reject a False Null Hypothesis Is a Type Il Error

If B = 1, but you observe a 3 that is negative but close to zero, you might fail to reject
a false null hypothesis, Hy: B = 0, and incorrectly ignore the fact that the alternative
hypothesis, Hy: B > 0, is true.

UNISA &=

.~ Distribution of Bs

Probability of
Type I Error

0 18 B

“Acceptance” Region Rejection
Region

Figure 5.3 “Acceptance” and Rejection Regions for a One-Sided Test of

For a one-sided test of Hy: B = 0vs. Hy: B > 0, the critical value divides the distribu-
tion of B (centered around zero on the assumption that Hy s true) into “acceptance”
and rejection regions.

The t-Test

* The t-test is the test that econometricians usually use to test
hypotheses about individual regression slope coefficients

— Tests of more than one coefficient at a time (joint

hypotheses) are typically done with the F-test
» The appropriate test to use when the stochastic error term is

normally distributed and when the variance of that

distribution must be estimated

— Since these usually are the case, the use of the t-test for
hypothesis testing has become standard practice in
econometrics

UNISA &=
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Decision Rules of
Hvpothesis Testing
» To test a hypothesis, we calculate a sample statistic that
determines when the null hypothesis can be rejected

depending on the magnitude of that sample statistic relative to
? glre)selected critical value (which is found in a statistical
able

» This procedure is referred to as a decision rule

» The decision rule is formulated before regression estimates
are obtained

* The range of possible values of the estimates is divided into
two regions, an “acceptance” (really, non-rejection) region
and a rejection region

» The critical value effectively separates the “acceptance”/non-
rejection region from the rejection region when testing a null
hypothesis

+ Graphs of these “acceptance” and rejection regions are given

in
Figures 5.3 and 5.4
 ———

UNISA &=

Figure 5.4 "Acceptance” and Rejection

Reg ) jed 5

- Distribution of fs

Probability of
Type I Error

B

-~
Rejection “Acceptance” Region Rejection
Region Region

Figure 5.4 “Acceptance” and Rejection Regions for a Two-Sided Test of

For a two-sided test of Hy: B = 0vs. Hy: B # 0, we divided the distribution of  into an
“acceptance” region and (1o rejection regions.

-~
ootk ang
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UNISA':

The t-Statistic

« For a typical multiple regression equation:
Yi= 8o+ BiXyi + BXyi t g (5.1)
we can calculate t-values for each of the estimated
coefficients

— Usually these are only calculated for the slope coefficients,
though (see Section 7.1)

< Specifically, the t-statistic for the kth coefficient is:

(B, — By)
kP y (5.2

t = - =1,2,...,K
ST )

UNISA Z=.

14



I'ne Critical t-Value and the

-l e De on Rule
» To decide whether to reject or not to reject a null hypothesis
based on a calculated t-value, we use a critical t-value

» Acritical t-value is the value that distinguishes the
“acceptance” region from the rejection region

» The critical t-value, t, is selected from a t-table (see Statistical
Table B-1 in the back of the book) depending on:

— whether the test is one-sided or two-sided,
— the level of Type | Error specified and

— the degrees of freedom (defined as the number of
observations minus the number of coefficients estimated
(including the constant) or N — K — 1)

I'ne Critical t-value and the t- 1 est becision

Rule (con
* Note that this decision rule works both for
calculated t-values and critical t-values for
one-sided hypotheses around zero (or another
hypothesized value, S):
Hy: B =0 Hy: B £S
Hai B> 0 Hai B> S
Hy: B 20 Hy: B =S
Hai B <0 Hai B < S
_—
UNISA =2

Choosing a Level of Significance

The level of significance indicates the probability of
observing an estimated t-value greater than the critical
t-value if the null hypothesis were correct

It also measures the amount of Type | Error implied by
a particular critical t-value

Which level of significance is chosen?

— 5 percent is recommended, unless you know
something unusual about the relative costs of
making Type | and Type Il Errors

The level of significance must be chosen before a
critical value can be found, using Statistical Table B

UNISA &=
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I'ne Critical t-Value and the

» The rule to apply when testing a single
regression coefficient ends up being that you
should:

Reject H, if |t,| > t, and if t, also has the same
sign implied by H,
Do not reject H, otherwise

I'ne Critical t-Value and the t- 1 est becision

R A
~U Ol

» As well as for two-sided hypotheses around
zero (or another hypothesized value, S):
Ho: B =0 Ho: B =S
Ha By #0 Ha B #S
» From Statistical Table B-1 the critical t-value
for a one-tailed test at a given level of
significance is exactly equal to the critical
t-value for a two-tailed test at twice the level
of significance of the one-tailed test—as also
illustrated by Figure 5.5

-~
legeof
anagement siences
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Confidence Intervals

« A confidence interval is a range that contains the true value of an item a
specified percentage of the time

« Itis calculated using the estimated regression coefficient, the two-sided
critical t-value and the standard error of the estimated coefficient as follows:

Confidence interval = B = t_ - SE(B) (5.5)

+ What's the relationship between confidence intervals and two-sided
hypothesis testing?

« If a hypothesized value fall within the confidence interval, then we cannot
reject the null hypothesis

15



This is an alternative to the t-test

A p-value, or marginal significance level, is the probability of observing a t-

score that size or larger (in absolute value) if the null hypothesis were

true

Graphically, it's two times the area under the curve of the t-distribution

between the absolute value of the actual t-score and infinity.

In theory, we could find this by combing through pages and

pages of statistical tables

But we don't have to, since we have EViews and Stata: these

(and other) statistical software packages automatically give the

p-values as part of the standard output!

In light of all this, the p-value decision rule therefore is:

bRejﬁct H, if p-valuey < the level of significance and if  has the sign implied
Y Fa

Limitations of the t-Test

The t-Test Does Not Test “Importance”:

The fact that one coefficient is “more statistically

significant” than another does not mean that it is

also more important in explaining the dependent

variable—but merely that we have more evidence

of the sign of the coefficient in question

3. Thet-Test Is Not Intended for Tests of the Entire
Population:
From the definition of the t-score, given by Equation
5.2, it is seen that as the sample size approaches
the population (whereby the standard error will
approach zero—since the standard error decreases
as N increases), the t-score will approach infinity!

Chapter 6

SPECIFICATION: CHOOSING THE
INDEPENDENT VARIABLES

UNISA &=
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Limitations of the t-Test

With the t-values being automatically printed out by computer
regression packages, there is reason to caution against potential
improper use of the t-test:

1. The t-Test Does Not Test Theoretical Validity:

If you regress the consumer price index on rainfall in
a time-series regression and find strong statistical
significance does that also mean that the
underlying theory is valid? Of course not!

Key Terms from Chapter 5

* Null hypothesis

» Alternative hypothesis
* Type | Error

» Level of significance
* Two-sided test

* Decision rule
¢ Critical value
 t-statistic

<ol
ongmic nd
management
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Specitying an Econometric Equation and

DE atlo 0
Before any equation can be eétimalted, it must be completely
specified

Specifying an econometric equation consists of three parts,
namely choosing the correct:

— independent variables

— functional form

— form of the stochastic error term

Again, this is part of the first classical assumption from
Chapter 4

A specification error results when one of these choices is
made incorrectly

This chapter will deal with the first of these choices (the two
other choices will be discussed in subsequent chapters)

UNISA |E5
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Omitted Variables

Two reasons why an important explanatory variable might have
been left out:
— we forgot...
— itis not available in the dataset, we are examining
» Either way, this may lead to omitted variable bias
(or, more generally, specification bias)
» The reason for this is that when a variable is not included, it
cannot be held constant

» Omitting a relevant variable usually is evidence that the entire
equation is a suspect, because of the likely bias of the
coefficients.

The Consequences of an Omitted Variable (cont.)
» What happens if we estimate Equation 6.2 when Equation 6.1 is
the truth?

We get bias!
What this means is that:

E(By) # By ©6.4)

The amount of bias is a function of the impact of the omitted
variable on the dependent variable times a function of the
correlation between the included and the omitted variable

Or, more formally:

Bias = Bomf(Tin,om) 6.7)

So, the bias exists unless:
1.the true coefficient equals zero, or
2.the included and omitted variables are uncorrelated

UNISA &=

Correcting for an Omitted Variable (cont.)

* What if:
— You have an unexpected result, which leads you to believe
that you have an omitted variable
— You have two or more theoretically sound explanatory
variables as potential “candidates” for inclusion as the
omitted variable to the equation is to use
* How do you choose between these variables?
» One possibility is expected bias analysis
— Expected bias: the likely bias that omitting a particular
variable would have caused in the estimated coefficient of
one of the included variables

2010/09/20

Ihe Consequences ot an

Omitted Variable

» Suppose the true regression model is:

Yi = Bo + BiXyi + BaXyi g (6.1)
Where €i is a classical error term

» If X, is omitted, the equation becomes:

Yi = Bo T BiXy; € 62)
Where:

€f =& + BaXy; (6.3)

» Hence, the explanatory variables in the estimated regression

(6.2) are not independent of the error term (unless the omitted
variable is uncorrelated with all the included variables—
something which is very unlikely)

» But this violates Classical Assumption IlI!

Correcting for an Omitted Variable

 In theory, the solution to a problem of specification bias seems
easy: add the omitted variable to the equation!

» Unfortunately, that’s easier said than done, for a couple of
reasons

1.Omitted variable bias is hard to detect: the amount of bias
introduced can be small and not immediately detectable

2.Even if it has been decided that a given equation is suffering
from omitted variable bias, how to decide exactly which
variable to include?

* Note here that dropping a variable is not a viable strategy to
help cure omitted variable bias:

— If anything you'll just generate even more omitted variable
bias on the remaining coefficients! U N]SA _—
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Correcting for an Omitted Variable (cont.)

» Expected bias can be estimated with Equation 6.7:
Expected bias = By, * f(rin om) (67)
* When do we have a viable candidate?

— When the sign of the expected bias is the same
as the sign of the unexpected result
« Similarly, when these signs differ, the variable is
extrelamely unlikely to have caused the unexpected
result

17
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Irrelevant Variables Irrelevant Variables (cont.)

- This refers to the case of including a variable in an equation » So, the inclusion of an irrelevant variable will not cause bias (since
when it does not belong there the true coefficient of the irrelevant variable is zero, and so the

- i . . second term will drop out of Equation 6.12)
» This is the opposite of the omitted variables case—and so the

impact can be illustrated using the same model » However, the inclusion of an irrelevant variable will:
» Assume that the true regression specification is: — Increase the variance of the estimated coefficients, and this
Y, =Bo + PiXyi + & (6.10) increased variance will tend to decrease the absolute magnitude

of their t-scores
— Decrease the adjusted R? (but not the R?)

» But the researcher for some reason includes an extra variable:

Yi = Bo t BiXyi + BoXy t € (6.11)
* The misspecified equation’s error term then becomes: + Table 6.1 summarizes the consequences of the omitted variable and
the included irrelevant variable cases (unless ry, = 0)
€ =6 — BaXy (6.12)
UNISA

Table 6.1 Effect of Omitted Variables and Four Important Specification Criteria

» We can summarize the previous discussion into four criteria to
help decide whether a given variable belongs in the equation:

1. Theory: Is the variable’s place in the equation
unambiguous and theoretically sound?

Table 6.1 Effect of Omitted Variables and Irrelevant Variables on the A R
L . 2. t-Test: Is the variable’s estimated coefficient significant in
Cosfficient Estimates the expected direction?

3. R% Does the overall fit of the equation (adjusted for
degrees of freedom) improve when the variable is added

Effect on Coefficient Estimates Omitted Variable Irrelevant Variable to the equation?
4. Bias: Do other variables’ coefficients change significantly
Bias Yes No when the variable is added to the equation?
; « |f all these conditions hold, the variable belongs in the
Variance Decreases Increases caE e
* If none of them hold, it does not belong
_—~— » The tricky part is the intermediate cases: u ju t!
UNISA E=. yP Y RIS AR

+ Omitted variable

* lIrrelevant variable
» Specification bias
* Specification error
« The four specification criteria CHAPTER 7
» Expected bias

SPECIFICATION: CHOOSING A
FUNCTIONAL FORM

_~——
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I+ d

» An estimate of B, has at least thrt.ee components:
1. the true B ' e

2. the constant impact of any specification errors (an omitted
variable, for example)
3. the mean of ¢ for the correctly specified equation (if not

equal to zero) By T2 Observations
» Unfortunately, these components can’t be distinguished from
one another because we can observe only 8y, the sum of the
three components
» As a result of this, we usually don’t interpret the constant term

» On the other hand, we should not suppress the constant term, 0 X
either, as illustrated by Figure 7.1

True Relation

Figure 7.1 The Harmful Effect of Suppressing the Constant Term

If the constant (or intercept) term is suppressed, the estimated regression will go

through the origin. Such an effect potentially biases the Bs and inflates their t-scores.
In this particular example, the true slope is close to zero in the range of the sample, —
but forcing the regression through the origin makes the slope appear to be signifi- e
cantly positive, fr—

Alternative Functional Forms Alternative Functional Forms (cont.)

» An equation is linear in the variables if plotting the function in * For example, Equations 7.1 and 7.2 are linear in the
terms of X and Y generates a straight line coefficients, while Equation 7:3:
» For example, Equation 7.1: Y =B, + XPs (7.3)
Y=Bp+BX+e (7.1) is not linear in the coefficients
is linear in the variables but Equation 7.2:  In fact, of all possible equations for a single explanatory
Y =B, +B X2+ ¢ (7.2) variable, only functions of the general form:
is not linear in the variables f(Y) = Bo + Buf(X) (7.4)
+ Similarly, an equation is linear in the coefficients only if the are linear in the coefficients 3, and 3

coefficients appear in their simplest form—they:

— are not raised to any powers (other than one)

— are not multiplied or divided by other coefficients

— do not themselves include some sort of function (like logs
or exponents) —

UNISA &= UNISA |

« This is based on the assumption that the slope of the * If e (a constant equal to 2.71828) to the “bth power” produces
. N . ) x, then b is the log of x:
relationship between the independent variable and the is the | f h if b =
dependent variable is constant: BB 0g ot x t.Ot BIEEBE I &= X .
» Thus, a log (or logarithm) is the exponent to which a given base
AY _ B k=112 K must be taken in order to produce a specific number
IV e + While logs come in more than one variety, we'll use only natural
» For the linear case, the elasticity of Y with respect to X (the . I_I?'?S (IOQEKIJ fthe R e)l |In th.ls “tlex} | =0 h
percentage change in the dependent variable caused by a 1- Oeylee el &l MEE Ueg) |5 Ty 9 ) =19 FEEms (!

(2.71828)® = x or, more simply,
In(x) = b means that e° = x
» For example, since €2 = (2.71828) 2 = 7.389, we can state that:

percent increase in the independent variable, holding the other
variables in the equation constant) is:

In(7.389) = 2
Flasticityy x, = —otr. — AY X _ o X Thus, the natural log of 7.389 is 2! Again, why? Two is the
YN AXXK AX Y Ky power of e that produces 7.389
e
UNISA == UNISA £
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What Is a Log? (cont.) Double-Log Form

» Let’s look at some other natural log calculations:
In(100) = 4.605
In(1000) = 6.908
In(10000) = 9.210
In(1000000) = 13.816
In(100000) = 11.513

» Note that as a number goes from 100 to 1,000,000, its natural
log goes from 4.605 to only 13.816! As a result, logs can be
used in econometrics if a researcher wants to reduce the
absolute size of the numbers associated with the same actual
meaning

» One useful property of natural logs in econometrics is that they
make it easier to figure out impacts in percentage terms (we’ll
see this when we get to the double-log speﬁiﬁt@%\ -_—

Figure /.2
X, Y
Bi>1
0<p <1
InY = Bo+ B,InX, + B,InX,
B <0
Y,
Y
0 X, 0 (Holding X, constant) X,

Figure 7.2 Double-Log Functions

Depending on the values of the regression coefficients, the double-log functional form

can take on a number of shapes. The left panel shows the use of a double-log function

to depict a shape useful in describing the economic concept of an isoquant or an indif-
ference curve. The right panel shows various shapes that can be achieved with a double-

log function if X, is held constant or is not included in the equation. P

Figure 7.3

Y =(Bo+ BXy)
+ByInX,

InY=By + 81X, + B2Xy

0 B 0 X,
(Holding X; constant) (Holding X, constant)

Figure 7.3 Semilog Functions

‘The semilog functional form on the right (InX) can be used to depict a sitwation in
which the impact of X; on Y is expected to increase at a decreasing rate as X, gets bigger
as long as B is greater than zero (holding X, constant). The semilog functional form
on the left (InY) can be used to depict a situation in which an increase in X, causes Y to g
increase at an increasing rate. egeof

oo and
ogemant scienc -

» Here, the natural log of Y is the dependent variable and the
natural log of X is the independent variable:

InY = By + By InXy + By InX, + € (7.5)

* In a double-log equation, an individual regression coefficient
can be interpreted as an elasticity because:
A(InY) AY/Y o
K= A% = XX = h]asnatyvrxk (7.6)

* Note that the elasticities of the model are constant and the
slopes are not

* This is in contrast to the linear model, in which the slopes are
constant but the elasticities are not

UNISA &=

Semilog Form

* The semilog functional form is a variant of the double-
log equation in which some but not all of the variables
(dependent and independent) are expressed in terms
of their natural logs.

* It can be on the right-hand side, as in:

Y= Bo + ByInXy; + BXy + & (7.7)
» Or it can be on the left-hand side, as in:
InY =By + By Xy +BX; + € (7.9)

» Figure 7.3 illustrates these two different cases

UNISA':
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Polynomial Form

» Polynomial functional forms express Y as a function of
independent variables, some of which are raised to powers
other than 1

» For example, in a second-degree polynomial (also called a
quadratic) equation, at least one independent variable is
squared:

Yi=Bo + BiXyi + BoXyi)? + BaXy + g (7.10)
» The slope of Y with respect to X, in Equation 7.10 is:
AY
ax, Pt 2BX (7.11)

» Note that the slope depends on the level of X,

e
feren

e
L
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Figure 7.4
Y Y
B,<0
Y = (Bo+ BXo) + (BiX; + BXD) >0
B2>0
By <0
0 (Holding X, constant) X4 0 (Holding X, constant) X

Figure 7.4 Polynomial Functions

Quadratic functional forms (polynomials with squared terms) take on U or inverted

U shapes, depending on the values of the coefficients (holding X, constant). The left

panel shows the shape of a quadratic function that could be used to show a typical cost
curve; the right panel allows the description of an impact that rises and then falls (like f

the impact of age on earnings). I sdences
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Figure 7.5 Inverse Functions

Y
Bi>0
Y =(Bo+ B2Xo) + By 17Xy
(Bo+ B2X5)
B <0
0 X,

(Holding X, constant)

Figure 7.5 Inverse Functions

Inverse (or reciprocal) functional forms allow the impact of an X; on Y to approach
zero as X, increases in size. The inverse function approaches the same value (the asymp- .o
tote) from the top or bottom depending on the sign of B;. ‘gement scences

lable /.17 Summary of Alternative Functional
O[]

Table 7.1 Summary of Alternative Functional Forms

Functional
Form Equation (one X only) The Meaning of 3
Linear Yi=Bo t+ B1X + g The slope of Y with respect to X
Double-log InY; = By + ByInX; + ¢ The elasticity of Y with respect to X

Semilog (InNX)  Y; = Bg + B1InX; + ¢ The change in'Y (in units) related to a
1 percent increase in X
Semilog (InY) InY; = Bg + B1X; + ¢ The percent change in Y related to a

one-unit increase in X
Polynomial Y; = By + B1X; + BoX3 + ¢ Roughly, the slope of Y with respect to
X for small X

Inverse Y =Bg + B(%) + ¢ Roughly, the inverse of the slope of Y
i

with respect to X for small X

UNISA EE..

Using Dummy Variables

* A dummy variable is a variable that takes on the
values of 0 or 1, depending on whether a condition for
a qualitative attribute (such as gender) is met
» These conditions take the general form:
Y; = Bo + By X; + BDy + g

1 if the ith observation meets a particular condition (7 1 8)

here D; =
where Dj {Ootherwise

» This is an example of an intercept dummy (as
opposed to a slope dummy, which is discussed in
Section 7.5)

 Figure 7.6 illustrates the consequences of including an
intercept dummy in a linear regression model

Figure 7.6

B Both Slopes = B,

By + By
B2>0)

Figure 7.6 An Intercept Dummy

If an intercept dummy (B,D;) is added to an equation, a graph of the equation will
have different intercepts for the two qualitative conditions specified by the dummy vari-
able. The difference between the two intercepts is 3. The slopes are constant with re-
spect to the qualitative condition. nt scences
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Slope Dummy Variables

» Contrary to the intercept dummy, which changed
only the intercept (and not the slope), the slope
dummy changes both the intercept and the slope

* The general form of a slope dummy equation is:
Y= Bo + BiX + BD; + BoXD; + g (7.20)
» The slope depends on the value of D:
When D =0, AY/AX = B,
When D = 1, AY/AX = (B + Bs)
* Graphical illustration of how this works in Figure 7.7

UNISA Z=.
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Figure 7.7 Slope and

nie nt Dummie
¥ Y= By + BiX; + BoD; + BsXiD;
DT
Slope =B, + B
(B;>0)
[
+By
ﬁa‘L T T Slope = B,
Bo D=0
0 X

Figure 7.7 Slope and Intercept Dummies

If slope dummy (B5X;D;) and intercept dummy (8,D;) terms are added to an equation,
a graph of the equation will have different intercepts and different slopes depending on
the value of the qualitative condition specified by the dummy variable. The difference ==

between the two intercepts is B,, whereas the difference between the two slopes is B3, reriscences

CHAPTER 8

MULTICOLLINEARITY

Perfect Multicollinearity

+ Perfect multicollinearity violates Classical Assumption VI, which
specifies that no explanatory variable is a perfect linear function of
any other explanatory variables

The word perfect in this context implies that the variation in one
explanatory variable can be completely explained by movements
in another explanatory variable
— A special case is that of a dominant variable: an explanatory
variable is definitionally related to the dependent variable

* An example would be (Notice: no error term!):

Xii = Qg + ayXy (8.1)
where the as are constants and the Xs are independent variables in:
Y= Bo + B Xy + BXy t+ & (8.2)

» Figure 8.1 illustrates this case

UNISA &=
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Key Term m Chapter 7

Elasticity

Double-log functional form
» Semilog functional form

» Polynomial functional form
* Inverse functional form

» Slope dummy

* Natural log

» Omitted condition

* Interaction term

« Linear in the variables

+ Linear in the coefficients

Introduction and Overview

» The next three chapters deal with violations of the
Classical Assumptions and remedies for those
violations

» This chapter addresses multicollinearity; the next
two chapters are on serial correlation and
heteroskedasticity

» For each of these three problems, we will attempt to
answer the following questions:

1. What is the nature of the problem?

2. What are the consequences of the problem?
3. How is the problem diagnosed?

4. What remedies for the problem are available?

<ol
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Perfect Multicollinearity (cont.)

» What happens to the estimation of an econometric equation
where there is perfect multicollinearity?
— OLS is incapable of generating estimates of the
regression coefficients
— most OLS computer programs will print out an error
message in such a situation
* What is going on?
» Essentially, perfect multicollinearity ruins our ability to estimate
the coefficients because the perfectly collinear variables
cannot be distinguished from each other:

* You cannot “hold all the other independent variables in the
equation constant” if every time one variable changes,
another changes in an identical manner!

» Solution: one of the collinear variables must be dro peT‘@@/
are essentially identical, anyway) U N ] §A pe
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Imperfect Multicollinearity

* Imperfect multicollinearity occurs when two
(or more) explanatory variables are imperfectly
linearly related, as in:

X4 = O+ o Xy + (8.7)

» Compare Equation 8.7 to Equation 8.1

— Notice that Equation 8.7 includes u;, a stochastic
error term

Without Severe
< Multicollinearity

With Severe
Multicollinearity

1
8 B

Figure 8.3 Severe Multicollinearity Increases the Variances of the Bs

Severe multicollinearity produces a distril of the s that is centered around the
true B but that has a much wider variance. Thus, the distribution of s with multi- legeot
collinearity is much wider than otherwise. management scences

The Detection of Multicollinearity

» First realize that that some multicollinearity exists in every
equation: all variables are correlated to some degree (even if
completely at random)

» Soit's really a question of how much multicollinearity exists in
an equation, rather than whether any multicollinearity exists

» There are basically two characteristics that help detect the
degree of multicollinearity for a given application:

1. High simple correlation coefficients
2. High Variance Inflation Factors (VIFs)
* We will now go through each of these in turn:

UNISA &=
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The Consequences of Multicollinearity

There are five major consequences of
multicollinearity:

1. Estimates will remain unbiased

2. The variances and standard errors of the
estimates
will increase:
a. Harder to distinguish the effect of one variable from
the effect of another, so much more likely to make
large errors in estimating the Bs than without
multicollinearity
b. As a result, the estimated coefficients, although still
unbiased, now come from distributions with much larger
variances and, therefore, larger standard errors (this
point is illustrated in Figure 8.3)

The Consequences of Multicollinearity (cont.)

3. The computed t-scores will fall:
a. Recalling Equation 5.2, this is a direct consequence of 2. above
4. Estimates will become very sensitive to changes in specification:

a. The addition or deletion of an explanatory variable or of a few
observations will often cause major changes in the values of the ¢
when significant multicollinearity exists

b. For example, if you drop a variable, even one that appears to be
statistically insignificant, the coefficients of the remaining variables in
the equation sometimes will change dramatically

c. This is again because with multicollinearity, it is much harder to
distinguish the effect of one variable from the effect of another

5. The overall fit of the equation and the estimation of the coefficients of
nonmulticollinear variables will be largely unaffected

_——
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High Simple Correlation Coefficients

 If a simple correlation coefficient, r, between any two
explanatory variables is high in absolute value, these two
particular Xs are highly correlated and multicollinearity is a
potential problem

* How high is high?

— Some researchers pick an arbitrary number, such as 0.80

— A better answer might be that r is high if it causes
unacceptably large variances in the coefficient estimates in
which we're interested.

» Caution in case of more than two explanatory variables:

— Groups of independent variables, acting together, may
cause multicollinearity without any single simple correlation
coefficient being high enough to indicate that multicollinearity
is present

— As a result, simple correlation coefficients must be
considered to be sufficient but not necessary tests for

multicollinearity UNISA
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High Variance Inflation Factors (VIFs)

. The variance inflation factor (VIF) is calculated from two steps:

1. Runan OLS regression that has X; as a function of all the other
explanatory variables in the equation—For i = 1, this equation would

be:
. Xy =0y + 00X, + 03X + ..+ Xy +V (8.15)
. where v is a classical stochastic error term

2. Calculate the variance inflation factor for

VIF(B;) = ﬁ (8.16)

. where R12 is the unadjusted R from step one

2010/09/20

High Variance Inflation Factors (VIFs) (cont.)

From Equation 8.16, the higher the VIF, the more severe the effects of
mulitcollinearity
How high is high?
While there is no table of formal critical VIF values, a common rule of thumb is that if
a given VIF is greater than 5, the multicollinearity is severe
* Asthe ber of ind d variables i , it makes sense to increase

this number slightly
Note that the authors replace the VIF with its reciprocal, (1 - Riz), called
tolerance, or TOL
Problems with VIF:

— No hard and fast VIF decision rule

— There can still be severe multicollinearity even with small VIFs

— VIF is a sufficient, not necessary, test for multicollinearity

UNISA &=
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Remedies for Multicollinearity

Essentially three remedies for multicollinearity:
1. Do nothing:

a. Multicollinearity will not necessarily reduce the t-scores
enough to make them statistically insignificant and/or
change the estimated coefficients to make them differ from
expectations

b. the deletion of a multicollinear variable that belongs in an
equation will cause specification bias

2. Drop a redundant variable:

a. Viable strategy when two variables measure essentially
the same thing

b. Always use theory as the basis for this decision

UNISA [z

Remedies for Multicollinearity (cont.)

3. Increase the sample size:
a. This is frequently impossible but a useful alternative to be
considered if feasible
b. The idea is that the larger sample normally will reduce the
variance of the estimated coefficients, diminishing
the impact of the multicollinearity

-~
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Key Terms from Chapter 8

» Perfect multicollinearity

» Severe imperfect multicollinearity
» Dominant variable

+ Auxiliary (or secondary) equation
» Variance inflation factor

* Redundant variable
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CHAPTER 9

SERIAL CORRELATION
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Pure Serial Correlation

Pure serial correlation occurs when Classical Assumption
v, whgch assumes uncorrelated otgservatlons. of the error
term, is violated (in a correctly specified equation!)

* The most commonly assumed kind of serial correlation is first-
order serial correlation, in which the current value of the error
term is a function of the previous value of the error term:

€ = P * Uy 9.1)
where: € = the error term of the equation in question
p = the first-order autocorrelation coefficient
u = a classical (not serially correlated) error term

Pure Serial Correlation (cont.)

* The sign of p indicates the nature of the serial correlation in
an equation:
* Positive:
— implies that the error term tends to have the same sign from one
time period to the next
— this is called positive serial correlation
* Negative:
— implies that the error term has a tendency to switch signs from
negative to positive and back again in consecutive observations
— this is called negative serial correlation
» Figures 9.1-9.3 illustrate several different scenarios
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Figure Y.1b

Figure 9.1 Positive Serial Correlation

With positive first-order serial correlation, the current observation of the error term
tends to have the same sign as the previous observation of the error term. An example
of positive serial correlation would be external shocks to an economy that take more
than one time period to completely work through the system

UNISA &=
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Pure Serial Correlation (cont.)

* The magnitude of p indicates the strength of the serial
correlation:
— If pis zero, there is no serial correlation
— As p approaches one in absolute value, the previous observation
of the error term becomes more important in determining the
current value of €, and a high degree of serial correlation exists

— For p to exceed one is unreasonable, since the error term
effectively would “explode”

» As a result of this, we can state that:
-1<p<+1 (9.2)
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Figure Y.1a
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Figure Y.2

o .
0 Time

Figure 9.2 No Serial Correlation

With no serial correlation, different observations of the error term are completely
uncorrelated with each other. Such error terms would conform to Classical
Assumption IV.

UNISA &=
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Figure Y.3b

Impure Serial Correlation

Impure serial correlation is serial correlation that is caused by a
specification error such as:
— an omitted variable and/or
— an incorrect functional form
+ How does this happen?
+ As an example, suppose that the true equation is:
Yo = Bo + BiXq + BoXy g (9.3)
where ¢, is a classical error term. As shown in Section 6.1, if X, is
accidentally omitted from the equation (or if data for X, are unavailable),

then:
Yy = Bo + BXy + €

« The error term is therefore not a classical error term

where e = B,X,; + € (9.4)

-~
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Impure Serial Correlation (cont.)

* Turn now to the case of impure serial correlation caused
by an incorrect functional form
» Suppose that the true equation is polynomial in nature:

Y= Bo + BXy + B2X%l + & (9.7)
but that instead a linear regression is run:
Y, =g + o Xy + €f (9.8)

» The new error term €" is now a function of the true error
term and of the differences between the linear and the
polynomial functional forms

Figure 9.5 illustrates how these differences often follow
fairly

0 - Time

Figure 9.3 Negative Serial Correlation

With negative first-order serial correlation, the current observation of the error term
tends to have the opposite sign from the previous observation of the error term. In
most time-series applications, negative serial correlation is much less likely than posi-
tive serial correlation.

Impure Serial Correlation (cont.)

« Instead, the error term is also a function of one of the
explanatory variables, X,
» As aresult, the new error term, €", can be serially
correlated even if the true error term ¢, is not
« In particular, the new error term will tend to be serially
correlated when:
1. X, itself is serially correlated (this is quite likely in a
time series) and _
2. the size of € is small compared to the size of 5,X,
+ Figure 9.4 illustrates 1., for the case of U.S. disposable
income
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Figure y.5a INCorrect Functonal Form as a
Source of Impure Serial Correlation

0 Xy
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Figure Y.5b Incorrect Functional Form as a ; ’
9 : . The Consequences of Serial Correlation

» The existence of serial correlation in the error term of an
equation violates Classical Assumption IV, and the
estimation of the equation with OLS has at least three

s consequences:
el e 1. Pure serial correlation does not cause bias in the
: coefficient estimates
e 2. Serial correlation causes OLS to no longer be the
minimum variance estimator (of all the linear unbiased
estimators)
3. Serial correlation causes the OLS estimates of the SE to
Figure 9.5 Incorrect Functional Form as a Source of Impure be biased, |eading to unreliable hypothesis testing.
Serial Correlation . . . . . .
) ) y - Typically the bias in the SE estimate is negative,

The use of an incorrect functional form tends to group positive and negative residuals . i

together, causing positive impure serial correlation. meaning that OLS underestimates the standard errors

of the coefficients (and thus overestimates the t-scores)

=
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The Durbin—Watson d Test d Test (conrt.r)r 7

+ Two main ways to detect serial correlation: + The equation for the Durbin—Watson d statistic for T
— Informal: observing a pattern in the residuals like that in observations is:
Figure 9.1 o .
— Formal: testing for serial correlation using the Durbin— PR ~ N2/ 2
Watson d tes% 9 4= 424 (& = &-1) // Alz € (9.10)
» We will now go through the second of these in detail
- First, it is important to note that the Durbin—Watson d test is where the es are the OLS residuals
only applicable if the following three assumptions are met: « There are three main cases:

1. The regression model includes an intercept term
2. The serial correlation is first-order in nature:
€ = PEq T Uy . )
where p is the autocorrelation coefficient and u is a classical 3. No serial correlation: d = 2
(normally distributed) error term
3. The regression model does not include a lagged
dependent variable

(discussed in Chapter 12) as an independent variable
_—
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1. Extreme positive serial correlation: d = 0
2. Extreme negative serial correlation: d = 4

-~
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The Durbin—Watson
d Test (cont.) d Test (cont.
« To test for positive (note that we rarely, if ever, test * 3. Set up the test hypotheses and decision rule:
for negative!) serial correlation, the following steps are . Hy:p<O (no positive serial correlation)
required: . Hpxp>0 (positive serial correlation)

1. Obtain the OLS residuals from the equation to be
tested and calculate the d statistic by using

Equation 9.10 : fd<d, Reject Ho
2. Determine the sample size and the number of : 76l = Ely Do not reject Hy
explanatory variables and then consult . ifd sds<dy Inconclusive
Statistical Tables B-4, B-5, or B-6 in Appendix B « In rare circumstances, perhaps first differenced equations,
to find the upper critical d value, d;, and the lower a two-sided d test might be appropriate
critical d value, d,, respectively (instructions for the + In such a case, steps 1 and 2 are still used, but step 3 is now:

use of these tables are also in that appendix)

UNISA £=.
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The Durbin—Watso

Figure Y.6 An Example ot a One-Sided Durbin—

O B on
3. Set up the test hypotheses and decision rule:

. . - . . Inconclusive Region
Hoy:p=0 (no serial correlation) i <y

. Hap#0 (serial correlation) Rejection Region ) SR

A d<dy, ! ] dy<d
. Positive Serial I 1 No Positive Serial
Correlation : } Correlation

. ifd<d, Reject H, | !
. . I I

0 ifd>4-d_ Reject H, ‘ /; + ! + \

. i i 0 0.60 2 4
if 4—dy>d>d, Do Not Reject Hy o S e

. Otherwise Inconclusive du=1.66

: ::elgture 9.6 gives an example of a one-sided Durbin Watson d Figure 9.6 An Example of a One-Sided Durbin—-Watson d Test
In a one-sided Durbin-Watson test for positive serial correlation, only values of d sig-
nificantly below 2 cause the null hypothesis of no positive serial correlation to be re-
jected. In this example, a d of 1.78 would indicate no positive serial correlation, a d of

0.60 would indicate positive serial correlation, and a d of 1.28 would be inconclusive.

Remedies for Serial Correlation Generalized Least Squares

* The place to start in correcting a serial correlation problem is to look « Start with an equation that has first-order serial correlation:
carefully at the specification of the equation for possible errors that o v A 4w .
might be causing impure serial correlation: It = Po ™ P1o1e T &t (9.15)

— Is the functional form correct? + Which, if & = pg,_; + u, (due to pure serial correlation), also equals:

— Are you sure that there are no omitted variables? .
Y= Bo T BrXqy t pe—1 + g

— Only after the specification of the equation has bee reviewed carefully
(9.16)
should the possibility of an adjustment for pure serial correlation be ‘ _ i .
considered * Multiply Equation 9.15 by p and then lag the new equation by one period,
obtaining:
+ There are two main remedies for pure serial correlation: .
— Generalized Least Squares pYi1 = pBo + PP Xgr g F pey 9.17)
- 2. Newey-West standard errors

»  We will no discuss each of these in turn

-~
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Generalized Least Squares (cont.) Generalized Least Squares (cont.)

+ Next, subtract Equation 9.107 from Equation 9.16, obtaining: * Equation 9.19 is called a Generalized Least Squares
. (or “quasi-differenced”) version of Equation 9.16.
Y, = pYiq = Bo(l — p) + By(Xy; — pXpea) + 1y

(9.18) * Notice that:
+ Finally, rewrite equation 9.18 as: 1.The error term is not serially correlated
+ Finally, rewrite equation 9.18 as: a. As a result, OLS estimation of Equation 9.19 will be
. minimum variance
Y¢ = B + BiXfy + ue (9.19) b. This is true if we know p or if we accurately estimate p)

2.The slope coefficient B, is the same as the slope
coefficient of the original serially correlated equation,

: Y& =Y, — pYig . Equation 9.16. Thus coefficients estimated with GLS
x = X — X (520) have the same meaning as those estimated with
1t 1t~ PAI—1 OLS.
B = Bo — pBo

UNISA &=
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Generalized Least Squares (cont.)

3. The dependent variable has changed compared to
that in Equation 9.16. This means that the GLS is
not directly comparable to the OLS.

4. To forecast with GLS, adjustments like those
discussed in Section 15.2 are required

» Unfortunately, we cannot use OLS to estimate a GLS
model because GLS equations are inherently nonlinear
in the coefficients

« Fortunately, there are at least two other methods
available:

The AR(1) Method

« Perhaps a better alternative than Cochrane—Orcutt for GLS
models

* The AR(1) method estimates a GLS equation like Equation 9.18
by estimating B, B and p simultaneously with iterative
nonlinear regression techniques (that are well beyond the
scope of this chapter!)

* The AR(1) method tends to produce the same coefficient
estimates as Cochrane—Orcutt

» However, the estimated standard errors are smaller

« This is why the AR(1) approach is recommended as long as your
software can support such nonlinear regression

UNISA &=

Newey—West Standard Errors (cont.)

+ The Newey-West SEs are biased but generally more accurate than
uncorrected standard errors for large samples in the face of serial
correlation

« As aresult, Newey—West standard errors can be used for
t-tests and other hypothesis tests in most samples without the errors of
inference potentially caused by serial correlation

« Typically, Newey-West SEs are larger than OLS SEs, thus producing
lower t-scores

2010/09/20

The Cochrane—Orcutt Method

« Perhaps the best known GLS method

« This is a two-step iterative technique that first produces an
estimate of p and then estimates the GLS equation using that
estimate.

* The two steps are:
1. Estimate p by running a regression based on the residuals of the equation
suspected of having serial correlation:
_ e,=pe s+
U 9.21) S
- where the e;s are the OLS residuals from the equation suspected of having
pure serial correlation and u, is a classical error term
2. Use this to estimate the GLS equation by substituting into Equation 9.18 and
using OLS to estimate Equation 9.18 with the adjusted data
« These two steps are repeated (iterated) until further iteration results in
little change in

« Once has converged (usually in just a few iterations), the last estimate of
step 2 is used as a final estimate of Equation 9.18

Newey—West Standard Errors

* Again, not all corrections for pure serial correlation
involve Generalized Least Squares

+ Newey-West standard errors take account of serial
correlation by correcting the standard errors without
changing the estimated coefficients

¢ The logic begin Newey-West standard errors is
powerful:

— If serial correlation does not cause bias in the estimated
coefficients but does impact the standard errors, then it makes
sense to adjust the estimated equation in a way that changes
the standard errors but not the coefficients

_——
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Key Terms from Chapter 9

 Impure serial correlation

« First-order serial correlation

« First-order autocorrelation coefficient
* Durbin—Watson d statistic

* Generalized Least Squares (GLS)
 Positive serial correlation

* Newey-West standard errors
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CHAPTER 9

HETEROSCEDASTICITY

Pure Heteroskedasticity (cont.)

» Instead, the variance of the distribution of the error term
depends on exactly which observation is being
discussed:

VAR(e) =of  (i=1,2,...,N) (102

» The simplest case is that of discrete
heteroskedasticity, where the observations of the error
term can be grouped into just two different distributions,
“wide” and “narrow”

* This case is illustrated in Figure 10.1

Impure Heteroskedasticity

Similar to impure serial correlati imp heterosk icity is
heteroskedasticity that is caused by a specification error

Contrary to that case, however, impure heteroskedasticity almost always
originates from an omitted variable (rather than an incorrect functional
form)

How does this happen?

— The portion of the omitted effect not represented by one of the included
explanatory variables must be absorbed by the error term.

— So, if this effect has a heteroskedastic component, the error term of the
misspecified equation might be heteroskedastic even if the error term of the true
equation is not!

This highlights, again, the importance of first checking that the
specification is correct before trying to “fix” things...

UNISA &=
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Pure Heteroskedasticity

» Pure heteroskedasticity occurs when Classical
Assumption V, which assumes constant variance of
the error term, is violated (in a correctly specified
equation!)

» Classical Assumption V assumes that:

2 . 3

{1 Wy 2000

(10.1)

« With heteroskedasticity, this error term variance is not
constant

Pure Heteroskedasticity (cont.)

» Heteroskedasticity takes on many more complex forms,
however, than the discrete heteroskedasticity case
* Perhaps the most frequently specified model of pure
heteroskedasticity relates the variance of the error term to an
exogenous variable Z; as follows:
(10.3)
Y=o+ BiXp — BXo t g (10.4)

— 272
where Z, the “proponiom[(y)fici’oﬁi” may or may not be in
the equation
» This is illustrated in Figures 10.2 and 10.3
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The Consequences of Heteroskedasticity

« The existence of heteroskedasticity in the error term of an
equation violates Classical Assumption V, and the
estimation of the equation with OLS has at least three
consequences:

1. Pure heteroskedasticity does not cause bias in the coefficient
estimates
2. Heteroskedasticity typically causes OLS to no longer be the
minimum variance estimator (of all the linear unbiased
estimators)

3. Heteroskedasticity causes the OLS estimates of the SE to be
biased, leading to unreliable hypothesis testing. Typically
the bias in the SE estimate is negative, meaning that OLS

underestimates the standard errors (and thus overestimates
the
t-scores)

UNISA |E5
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Testing for Heteroskedasticity

« Econometricians do not all use the same test for heteroskedasticity because
heteroskedasticity takes a number of different forms, and its precise
manifestation in a given equation is almost never known

« Before using any test for heteroskedasticity, however, ask the following:

1. Are there any obvious specification errors?
— Fix those before testing!
2. s the subject of the research likely to be afflicted with
heteroskedasticity?

— Not only are cross-sectional studies the most frequent source of
heteroskedasticity, but cross-sectional studies with large variations in the
size of the dependent variable are particularly susceptible to
heteroskedasticity

3. Does a graph of the residuals show any evidence of
heteroskedasticity?

— Specifically, plot the residuals against a potential Z proportionality factor

— In such cases, the graph alone can often show that heteroskedasticity is or
is not likely

— Figure 10.4 shows an example of what to look for: an expanding (or
contracting) range of the residuals

The Park Test

3. Test the significance of the coefficient of Z in
Equation 10.7 with a t-test:

— If the coefficient of Z is statistically significantly different
from zero, this is evidence of heteroskedastic patterns in the
residuals with respect to Z

— Potential issue: How do we choose Z in the first place?
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Th

ite Test (cont.)

3. Test the overall significance of Equation 10.9 with the
chi-square test

. — The appropriate test statistic here is NR?, or the sample size
(N) times the coefficient of determination (the unadjusted R?) of
Equation 10.9

. - This test statistic has a chi-square distribution with degrees
of freedom equal to the number of slope coefficients in Equation 10.9

- If NR2 is larger than the critical chi-square value found in
Statistical Table B-8, then we reject the null hypothesis and conclude
that it's likely that we have heteroskedasticity

- If NR? is less than the critical chi-square value, then we
cannot reject the null hypothesis of homoskedasticity
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The Park Test

The Park test has three basic steps:
1. Obtain the residuals of the estimated regression
equation:
& = Yi — Y — Y — (Bo + B Xy + BoXyy)  (10.6)
2. Use these residuals to form the dependent variable in a
second regression:

In(e?) = vy + oyInZ; + y (10.7)
where: e; = the residual from the ith observation from
Equation 10.6

Z; = your best choice as to the possible
proportionality factor (Z)
u; = a classical (homoskedastic) error term
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The White Test

« The White test also has three basic steps:
1. Obtain the residuals of the estimated regression equation:
. - This is identical to the first step in the Park test

2. Use these residuals (squared) as the dependent variable in a
second equation that includes as explanatory variables each X
from the original equation, the square of each X, and the product
of each X times every other X—for example, in the case of three
explanatory variables:

(e)? = ap + agXy; + Xy + agXy; + XY
2 2
T oosXgi T ogXg; T arXgXy + agXyXs;
T agXpiXs; Ty
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Remedies for Heteroskedasticity

« The place to start in correcting a heteroskedasticity problem is to
look carefully at the specification of the equation for possible errors
that might be causing impure heteroskedasticity :

— Are you sure that there are no omitted variables?

— Only after the specification of the equation has been reviewed
carefully should the possibility of an adjustment for pure
heteroskedasticity be considered

« There are two main remedies for pure heteroskedasticit!
1. Heteroskedasticity-corrected standard errors
2. Redefining the variables

»  We will now discuss each of these in turn:
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Heteroskedasticity-Corrected Standard
O

» Heteroskedasticity-corrected errors take account of
heteroskedasticity correcting the standard errors
without changing the estimated coefficients

» The logic behind heteroskedasticity-corrected standard
errors is power

— If heteroskedasticity does not cause bias in the estimated
coefficients but does impact the standard errors, then it
makes sense to adjust the estimated equation in a way that
changes the standard errors but not the coefficients
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Redefining the Variables

» Sometimes it's possible to redefine the variables in a
way that avoids heteroskedasticity
« Be careful, however:

— Redefining your variables is a functional form specification
change that can dramatically change your equation!

* In some cases, the only redefinition that's needed to rid
an equation of heteroskedasticity is to switch from a
linear functional form to a double-log functional form:

— The double-log form has inherently less variation than the
linear form, so it's less likely to encounter heteroskedasticity

UNISA &=

Redefining the Variables (cont.)

This is illustrated in Figure 10.5

« In this case, per capita expenditures would be a logical
dependent variable

» Such a transformation is shown in Figure 10.6

» Aside: Note that Weighted Least Squares (WLS), that
some authors suggest as a remedy for
heteroskedasticity, has some serious potential
drawbacks and can therefore generally is not be
recommended (see Footnote 14, p. 355, for details)
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Heteroskedasticity-Corrected Standard
O on

* The heteroskedasticity-corrected SEs are biased but
generally more accurate than uncorrected standard
errors for large samples in the face of
heteroskedasticity

« As a result, heteroskedasticity-corrected standard errors
can be used for t-tests and other hypothesis tests in
most samples without the errors of inference potentially
caused by heteroskedasticity

« Typically heteroskedasticity-corrected SEs are larger
than OLS SEs, thus producing lower t-scores

Redefining the Variables (cont.)

< In other situations, it might be necessary to completely
rethink the research project in terms of its underlying
theory

« For example, a cross-sectional model of the total
expenditures by the governments of different cities may
generate heteroskedasticity by containing both large
and small cities in the estimation sample

e Why?

— Because of the proportionality factor (Z) the size of the
cities

e
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Key Terms from Chapter 10

* Impure heteroskedasticity

« Pure heteroskedasticity

« Proportionality factor Z

* The Park test

* The White test

« Heteroskedasticity-corrected standard errors
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