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ECONOMETRIC TECHNIQUES

DISCUSSION CLASS 2
LECTURER: SENIA NHAMO

nhamos@unisa.ac.za
012 429 4093

Overview of the course

• What is econometrics? (Chapters 1-2)
• Statistics (Chapters 3-5, 16)
• Probability Distribution of 
• Hypothesis testing
• Specification (chapters 6 7)

β̂

• Specification (chapters 6-7)
• Econometric problems (Chapters 8-11)

LEARNING AND TEACHING
2 Lectures and accompanying notes
Office hours (phone  to make an appointment)

012 429 4093
Text book: Studenmund, A.H (2007) Using 
Econometrics. A Practical Guide, Fifth Edition, 
PearsonPearson
MyUnisa
Email : nhamos@unisa.ac.za

ASSESSMENT

2 Assignments (10% weighting)
Examination (90% weighting)
Assignment 1 is compulsory

EXAMINATION
See TL201/2010

May/June 2010 exam paper
2 hours / 100 marks

Section A: Theory
Answer all 4 questions
4 x 15 = 60
The questions correspond to a large extent to the 
questions at the end of each study unit

EXAMINATION (continued)
Section B: Applications

Answer 2 of 3 questions
2 x 20 = 40

Regression results to interpret and/or to evaluate
hypotheses testing
econometric problems / remedy

Compile specifications
any functional form eg Y=a+b.log(X)
lags, intercept dummy variables, slope dummy variables
Few calculations
rather evaluate a set of regression results, identify errors, 
test coefficients for statistical significance etc
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EXAMINATION (continued)

No multiple-choice questions
Formulae sheet will be provided.

See p249-250 of study guide.
Statistical tables are provided for statistical 
testingg
May use non-programmable calculator

CHAPTER 1

AN OVERVIEW OF 
REGRESSION ANALYSIS

What is Econometrics?
• Econometrics literally means “economic 

measurement”
• It is the quantitative measurement and analysis of 

actual economic and business phenomena—and so 
involves:
– economic theory
– Statistics
– Math
– observation/data collection

MAJOR USES OF ECONOMETRICS

Describing economic reality 
Structural analysis
Testing hypothesis about economic theory
Policy evaluation 
Forecasting future economic activityForecasting future economic activity

What is Regression Analysis?

• Economic theory can give us the direction of a 
change, e.g. the change in the demand for dvd’s 
following a price decrease (or price increase)

• But what if we want to know not just “how?” but 
also “how much?”

• Then we need:
– A sample of data
– A way to estimate such a relationship

• one of the most frequently ones used is 
regression analysis

What is Regression Analysis? (cont.)

• Formally, regression analysis is a statistical 
technique that attempts to “explain” movements in 
one variable, the dependent variable, as a function 
of movements in a set of other variables, the 
independent (or explanatory) variables, through 
the quantification of a single equation
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Example

• Q = f(P, Ps, Yd) (1.1)
• Here, Q is the dependent variable and P, Ps, Yd are 

the independent variables
• Don’t be deceived by the words dependent and 

independent, however
A t ti ti ll i ifi t i lt d t– A statistically significant regression result does not 
necessarily imply causality

– We also need:
• Economic theory
• Common sense

Single-Equation Linear Models

• The simplest example is: 
Y = β0 + β1X (1.2)

• The βs are denoted “coefficients”
– β0 is the “constant” or “intercept” term
– β1 is the “slope coefficient”: the amount that Y will 

change when X increases by one unit; for a linear 
model β is constant over the entire functionmodel, β1 is constant over the entire function

Single-Equation Linear Models (cont.)
• Is (1.2) a complete description of origins of variation in Y?
• No, at least four sources of variation in Y other than the 

variation in the included Xs:
• Other potentially important explanatory variables may be 

missing 
(e.g., X2 and X3)

• Measurement error
• Incorrect functional form
• Purely random and totally unpredictable occurrences

• Inclusion of a “stochastic error term” (ε) effectively “takes 
care” of all these other sources of variation in Y that are NOT 
captured by X, so that (1.2) becomes: 

Y = β0 + β1X + ε (1.3)

Data types

To estimate the parameters of interest, obtain the 
necessary data. Data source could involve time series, 
cross-sectional or panel data. 
Time series data are collected over time for the same 
country or other single aggregate economic unit
Cross-sectional data are collected for a sample over p
individuals, households, firms or other disaggregate 
economic entity at a point in time
Panel data contains elements of both time series and 
cross-sectional data

Indexing Conventions

• Subscript “i” for data on individuals (so called “cross 
section” data)

• Subscript “t” for time series data (e.g., series of years, 
months, or days—daily exchange rates, for example )

• Subscript “it” when we have both (for example, 
“panel data”)panel data ) 

The Estimated Regression Equation
• The regression equation considered so far is the “true”—but unknown—

theoretical regression equation
• Instead of “true,” might think about this as the population regression vs. the 

sample/estimated regression
• How do we obtain the empirical counterpart of the theoretical regression 

model (1.3)?
• It has to be estimated
• The empirical counterpart to (1.3) is: 

(1 4)XY ˆˆˆ ββ += (1.4) 

• The signs on top of the estimates are denoted “hat,” so that we have “Y-hat,” 
for example

ii XY 10 ββ +=
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Key Terms from Chapter 1
• Regression analysis
• Dependent variable
• Independent (or explanatory) variable(s)
• Causality vs correlation
• Linear
• Intercept term
• Slope coefficient
• Multivariate regression model
• Stochastic error term vs Residual term
• Time series vs cross sectional data

CHAPTER 2

ORDINARY LEAST SQUARES

Estimating Single-Independent-Variable Models with 
OLS

• Recall that the objective of regression analysis is to 
start from:

• (2.1)
• And, through the use of data, to get to:
• (2.2)
• Recall that equation 2.1 is purely theoretical, while 

equation (2.2) is it empirical counterpart
• How to move from (2.1) to (2.2)?

Estimating Single-Independent-Variable Models with OLS
(cont.)

• One of the most widely used methods is Ordinary 
Least Squares (OLS)

• OLS minimizes (i = 1, 2, …., N) (2.3)

• Or, the sum of squared deviations of the vertical 
distance between the residuals (i.e. the estimated 
error terms) and the estimated regression line

• We also denote this term the “Residual Sum of 
Squares” (RSS)

Estimating Single-Independent-Variable Models 
with OLS (cont.)

• Similarly, OLS minimizes: 

• Why use OLS?
• Relatively easy to use
• The goal of minimizing RSS is intuitively / theoretically 

appealing

2)ˆ( i

N

i
i YY −∑

appealing
• This basically says we want the estimated regression 

equation to be as close as possible to the observed data
• OLS estimates have a number of useful characteristics

Estimating Single-Independent-Variable Models 
with OLS (cont.)

How does OLS work?
• First recall from (2.3) that OLS minimizes the sum of 

the squared residuals 
• Next, it can be shown that the coefficients that ensure 

that for the case of just one independent variable are: 
(2 4)(2.4)

(2.5)
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Estimating Multivariate Regression Models with 
OLS

• In the “real world” one explanatory variable is not enough
• The general multivariate regression model with K independent 

variables is:
Yi = β0 + β1X1i + β2X2i + ... + βKXKi + εi (i = 1,2,…,N)
(1.13)

• Biggest difference with single-explanatory variable regression 
model is in the interpretation of the slope coefficientsmodel is in the interpretation of the slope coefficients
– Now a slope coefficient indicates the change in the 

dependent variable associated with a one-unit increase in 
the explanatory variable holding the other explanatory 
variables constant

Total, Explained, and Residual Sums of Squares

• TSS  = ESS + RSS     
• This is usually called the decomposition of variance

Figure 2.3 Decomposition of the Variance in Y Describing the Overall Fit of the Estimated Model

• The simplest commonly used measure of overall fit is 
the coefficient of determination, R2:

(2.14)

• Since OLS selects the coefficient estimates 
that minimizes RSS, OLS provides the largest 
possible R2 (within the class of linear models)

The adjusted coefficient of determination

• A major problem with R2 is that it can never decrease 
if another independent variable is added

• An alternative to R2 that addresses this issue is the 
adjusted R2 :

(2.15)( )

Where N – K – 1 = degrees of freedom

Adjusted R2

Why is adjusted R-squared better? 
When K increases, RSS surely drops, but the denominator (n-
K-1) also drops. Now if the drop in RSS is not large enough, 
RSS/(n-K-1) will actually increase so that adjusted R-squared 
will decrease. 
In other words, adjusted R-squared penalizes the measure of fit 
in adding an explanatory variable if that variable does notin adding an explanatory variable if that variable does not 
contribute much toward explaining the variable in Y. 
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Key Terms from Chapter 2

• Ordinary Least Squares (OLS)
• Interpretation of a multivariate regression 

coefficient 
• Total sums of squares
• Explained sums of squares
• Residual sums of squaresResidual sums of squares
• Coefficient of determination, R2

• Simple correlation coefficient, r
• Degrees of freedom
• Adjusted coefficient of determination , R2

CHAPTER 3

LEARNING TO USE REGRESSION 
ANALYSIS

Steps in Applied 
Regression Analysis

• The first step is choosing the dependent variable – this step 
is determined by the purpose of the research 

• After choosing the dependent variable, it’s logical to follow 
the following sequence:
1. Review the literature and develop the theoretical model
2. Specify the model: Select the independent variables and 

the functional form
3 Hypothesize the expected signs of the coefficients3. Hypothesize the expected signs of the coefficients
4. Collect the data. Inspect and clean the data
5. Estimate and evaluate the equation
6. Document the results

Step 1: Review the Literature and Develop the 
Theoretical Model

• Perhaps counter intuitively, a strong theoretical foundation is 
the best start for any empirical project

• Reason: main econometric decisions are determined by the 
underlying theoretical model

• Useful starting points:
– Journal of Economic Literature or a business oriented 

bli ti f b t tpublication of abstracts
– Internet search, including Google Scholar
– EconLit, an electronic bibliography of economics literature 

(for more details, go to www.EconLit.org)

Step 2: Specify the Model: Independent Variables 
and Functional Form

• After selecting the dependent variable, the 
specification of a model involves choosing the 
following components:

1. the independent variables and how they should 
be measured,

2. the functional (mathematical) form of the 
variables andvariables, and

3. the properties of the stochastic error term

Step 2: Specify the Model: Independent Variables and 
Functional Form (cont.)

• A mistake in any of the three elements results in a 
specification error

• For example, only theoretically relevant explanatory 
variables should be included

• Even so, researchers frequently have to make choices 
–also denoted imposing their priorsalso denoted imposing their priors

• Example:
• when estimating a demand equation, theory informs 

us that prices of complements and substitutes of the 
good in question are important explanatory 
variables

• But which complements—and which substitutes?
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Step 3: Hypothesize the Expected Signs of the 
Coefficients

• Once the variables are selected, it’s important to 
hypothesize the expected signs of the regression 
coefficients

• Example: demand equation for a final consumption 
good

• First, state the demand equation as a general function:First, state the demand equation as a general function:

(3.2)

• The signs above the variables indicate the 
hypothesized sign of the respective regression 
coefficient in a linear model

Step 4: Collect the Data & Inspect and Clean the 
Data

• A general rule regarding sample size is “the more 
observations the better”

• as long as the observations are from the same 
general population!

• The reason for this goes back to notion of degrees of 
freedom

• When there are more degrees of freedom:
• Every positive error is likely to be balanced by a 

negative error 
• The estimated regression coefficients are 

estimated with a greater deal of precision

Step 4: Collect the Data & Inspect and Clean the 
Data (cont.)

• Estimate model using the data in Table 2.2 to get:
• Inspecting the data—obtain a printout or plot (graph) 

of the data
• Reason: to look for outliers

– An outlier is an observation that lies outside the 
range of the rest of the observations

• Examples:
– Does a student have a 7.0 GPA on a 4.0 scale?
– Is consumption negative?

Step 5: Estimate and Evaluate the Equation
• Once steps 1–4 have been completed, the estimation

part is quick
– using Eviews or Stata to estimate an OLS 

regression takes less than a second!
• The evaluation part is more tricky, however, involving 

answering the following questions:answering the following questions:
– How well did the equation fit the data?
– Were the signs and magnitudes of the estimated 

coefficients as expected?
• Afterwards may add sensitivity analysis

Step 6: Document the Results
• A standard format usually is used to present estimated 

regression results:

(3.3)

• The number in parentheses under the estimated 
coefficient is the estimated standard error of the 
estimated coefficient, and the t-value is the one used 
to test the hypothesis that the true value of the 
coefficient is different from zero (more on this later!)

Key Terms from Chapter 3
• The six steps in applied regression analysi
• Cross-sectional data set
• Specification error
• Degrees of freedom
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CHAPTER 17

STATISTICAL PRINCIPLES

Probability
• A random variable X is a variable whose numerical value is 

determined by chance, the outcome of a random phenomenon
– A discrete random variable has a countable number of 

possible values, such as 0, 1, and 2
– A continuous random variable, such as time and distance, 

can take on any value in an interval
• A probability distribution P[X ] for a discrete random variable• A probability distribution P[Xi] for a discrete random variable 

X assigns probabilities to the possible values X1, X2, and so on
• For example, when a fair six-sided die is rolled, there are six 

equally likely outcomes, each with a 1/6 probability of occurring

Mean, Variance, and 
Standard Deviation

 
µ = E[X] = XiP[Xi ]

i
∑

The expected value (or mean) of a discrete random variable X 
is a weighted average of all possible values of X, using the 
probability of each X value as weights

• the variance of a discrete random variable X is a weighted 
average for all possible values of X of the squared difference

 
σ2 = E[(X − µ)2 ] = (Xi − µ)2P[Xi ]

i
∑

average, for all possible values of X, of the squared difference 
between X and its expected value, using the probability of each 
X value as weights: 

• The standard deviation σ is the square root of the variance

Continuous Random Variables
• Our examples to this point have involved discrete random 

variables, for which we can count the number of possible 
outcomes:
– The coin can be heads or tails; the die can be 1, 2, 3, 4, 5, or 

6 
• For continuous random variables, however, the outcome can 

be any value in a given intervalbe any value in a given interval
– For example, Figure 16.2 shows a spinner for randomly 

selecting a point on a circle
• A continuous probability density curve shows the probability 

that the outcome is in a specified interval as the corresponding 
area under the curve
– This is illustrated for the case of the spinner in Figure 16.3

Figure 17.6 
The Normal Distribution The Normal Distribution (cont.)

• The central limit theorem is a very strong result for 
empirical analysis that builds on the normal 
distribution

• The central limit theorem states that:
– if Z is a standardized sum of N independent, identically 

distributed (discrete or continuous) random variables with a 
finite, nonzero standard deviation, then the probability 
distribution of Z approaches the normal distribution as N 
increases
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Sampling Distributions
• The sampling distribution of a statistic is the probability 

distribution or density curve that describes the population of 
all possible values of this statistic
– For example, it can be shown mathematically that if the 

individual observations are drawn from a normal 
distribution, then the sampling distribution for the sample 
mean is also normal

– Even if the population does not have a normal distribution, 
the sampling distribution of the sample mean will approach a 
normal distribution as the sample size increases

The Mean of the Sampling Distribution
• A sample statistic is an unbiased estimator of a population 

parameter if the mean of the sampling distribution of this 
statistic is equal to the value of the population parameter

• Because the mean of the sampling distribution of X is µ, 
X is an unbiased estimator of µ

The Standard Deviation of the Sampling 
Distribution

• One way of gauging the accuracy of an estimator is with its 
standard deviation:
– If an estimator has a large standard deviation, there is a 

substantial probability that an estimate will be far from its 
mean

– If an estimator has a small standard deviation, there is a 
high probability that an estimate will be close to its meanhigh probability that an estimate will be close to its mean

Key Terms from Chapter 17
• Random variable
• Probability distribution
• Expected Value
• Mean
• Variance
• Standard deviation
• Population
• Sample
• Sampling distribution
• Population mean
• Sample mean
• Population standard deviation
• Sample standard deviation
• Central limit theorem

CHAPTER 4

THE CLASSICAL MODEL

The Classical Assumptions
• The classical assumptions must be met in order for OLS estimators to be 

the best available
• The seven classical assumptions are:

I. The regression model is linear, is correctly specified, and has an 
additive error term

II. The error term has a zero population mean
III. All explanatory variables are uncorrelated with the error term
IV. Observations of the error term are uncorrelated with each other 

(no serial correlation)
V The error term has a constant variance (no heteroskedasticity)V. The error term has a constant variance (no heteroskedasticity)
VI. No explanatory variable is a perfect linear function of any other 

explanatory variable(s) (no perfect multicollinearity)
VII. The error term is normally distributed (this assumption is optional 

but usually is invoked)
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I: linear, correctly specified, additive error term
• Consider the following regression model:

Yi = β0 + β1X1i + β2X2i + ... + βKXKi + εi (4.1)
• This model:

– is linear (in the coefficients)
– has an additive error term

• If we also assume that all the relevant explanatory 
variables are included in (4.1) then the model is also 
correctly specified

II: Error term has a zero population mean
• As was pointed out in Section 1.2, econometricians 

add a stochastic (random) error term to regression 
equations

• Reason: to account for variation in the dependent 
variable that is not explained by the model

• The specific value of the error term for each 
observation is determined purely by chance

III: All explanatory variables are uncorrelated with 
the error term

• If not, the OLS estimates would be likely to attribute to 
the X some of the variation in Y that actually came 
from the error term

• For example, if the error term and X were positively 
correlated then the estimated coefficient would 
probably be higher than it would otherwise have been p y g
(biased upward)

• This assumption is violated most frequently when a 
researcher omits an important independent variable 
from an equation

IV: No serial correlation of 
error term

• If a systematic correlation does exist between one observation 
of the error term and another, then it will be more difficult for 
OLS to get accurate estimates of the standard errors of the 
coefficients

• This assumption is most likely to be violated in time-series 
models:
– An increase in the error term in one time period (a random 

shock, for example) is likely to be followed by an increase in 
th t i dthe next period

• If, over all the observations of the sample εt+1 is correlated with 
εt then the error term is said to be serially correlated (or auto-
correlated), and Assumption IV is violated 

• Violations of this assumption are considered in more detail in 
Chapter 9

V: Constant variance / No heteroskedasticity in 
error term

• The error term must have a constant variance
• That is, the variance of the error term cannot change 

for each observation or range of observations
• If it does, there is heteroskedasticity present in the 

error term
• An example of this can bee seen from Figure 4 2• An example of this can bee seen from Figure 4.2

Figure 4.2 An Error Term Whose Variance 
Increases as Z Increases (Heteroskedasticity)
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VI: No perfect multicollinearity
• Perfect collinearity between two independent 

variables implies that:
– they are really the same variable, or
– one is a multiple of the other, and/or 
– that a constant has been added to one of the 

i blvariables                        
• Example: 
• GDP and MAF in assignment 2

VII: The error term is normally distributed
• Basically implies that the error term follows a 

bell-shape
• Strictly speaking not required for OLS estimation 

(related to the Gauss-Markov Theorem: more on this 
in Section 4.3)

• Its major application is in hypothesis testing, which 
uses the estimated regression coefficient touses the estimated regression coefficient to 
investigate hypotheses about economic behavior (see 
Chapter 5)

The Sampling Distribution of  
• We saw earlier that the error term follows a probability 

distribution (Classical Assumption VII)
• But so do the estimates of β!

– The probability distribution of these    values across different 
samples is called the sampling distribution 
of   

• We will now look at the properties of the mean, the 
variance, and the standard error of this sampling 
distribution

Properties of the Mean

• A desirable property of a distribution of estimates in that its 
mean equals the true mean of the variables being estimated

• Formally, an estimator    is an unbiased estimator if its 
sampling distribution has as its expected value the true value of 
. 

• We also write this as follows:

•
(4.9)

• Similarly, if this is not the case, we say that the estimator is 
biased

Properties of the Variance

• Just as we wanted the mean of the sampling distribution to be 
centered around the true population   , so too it is desirable for 
the sampling distribution to be as narrow (or precise) as 
possible. 
– Centering around “the truth” but with high variability might be of 

very little use. 

• One way of narrowing the sampling distribution is to increase 
the sampling size (which therefore also increases the degrees 
of freedom)

• These points are illustrated in Figures 4.4 and 4.5

Figure 4.4
Distributions of 
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Figure 4.5 Sampling Distribution of    
for Various Observations (N) 

Properties of the 
Standard Error

• The standard error of the estimated coefficient, SE(   
), is the square root of the estimated variance of the 
estimated coefficients.

• Hence, it is similarly affected by the sample size and 
the other factors discussed previously
– For example, an increase in the sample size will decrease 

the standard error

– Similarly, the larger the sample, the more precise the 
coefficient estimates will be

The Gauss-Markov Theorem and the 
Properties of OLS Estimators

• The Gauss-Markov Theorem states that: 
– Given Classical Assumptions I through VI (Assumption VII, 

normality, is not needed for this theorem), the Ordinary 
Least Squares estimator of –k is the minimum variance 
estimator from among the set of all linear unbiased 
estimators of –k, 
for k = 0, 1, 2, …, K

• We also say that “OLS is BLUE”: “Best (meaning 
minimum variance) Linear Unbiased Estimator”

The Gauss-Markov Theorem and the 
Properties of OLS Estimators (cont.)

• The Gauss-Markov Theorem only requires the first six classical 
assumptions

• If we add the seventh condition, normality, the OLS coefficient 
estimators can be shown to have the following properties: 
– Unbiased: the OLS estimates coefficients are centered around the true 

population values
– Minimum variance: no other unbiased estimator has a lower variance– Minimum variance: no other unbiased estimator has a lower variance 

for each estimated coefficient than OLS
– Consistent: as the sample size gets larger, the variance gets smaller, 

and each estimate approaches the true value of the coefficient being 
estimated

– Normally distributed: when the error term is normally distributed, so 
are the estimated coefficients—which enables various statistical tests 
requiring normality to be applied (we’ll get back to this in Chapter 5)

Table 4.1a
Notation Conventions Key Terms from Chapter 4

• The classical assumptions
• Classical error term
• Standard normal distribution
• SE(   ),
• Unbiased estimatorUnbiased estimator
• BLUE
• Sampling distribution
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CHAPTER 5

HYPOTHESIS TESTING

What Is Hypothesis Testing?

• Hypothesis testing is used in a variety of settings
– The Food and Drug Administration (FDA), for 

example, tests new products before allowing their 
sale

• If the sample of people exposed to the new 
product shows some side effect significantly more 
frequently than would be expected to occur by 
h th FDA i lik l t ithh ld l fchance, the FDA is likely to withhold approval of 

marketing that product
– Similarly, economists have been statistically 

testing various relationships, for example that 
between consumption and income

• Note here that while we cannot prove a given 
hypothesis (for example the existence of a given 
relationship), we often can reject a given hypothesis 
(again, for example, rejecting the existence of a given 
relationship)

Classical Null and Alternative Hypotheses

• The researcher first states the hypotheses to be tested
• Here, we distinguish between the null and the 

alternative hypothesis:
– Null hypothesis (“H0”): the outcome that the 

researcher does not expect (almost always includes 
an equality sign)an equality sign)

– Alternative hypothesis (“HA”): the outcome the 
researcher does expect

• Example:
H0: β ≤ 0 (the values you do not expect)  
HA: β > 0 (the values you do expect)

Type I and Type II Errors

• Two types of errors possible in hypothesis testing:
– Type I: Rejecting a true null hypothesis
– Type II: Not rejecting a false null hypothesis

• Example: Suppose we have the following null and 
alternative hypotheses:

H0: β ≤ 0H0: β ≤ 0 
HA: β > 0

– Even if the true β really is not positive, in any one 
sample we might still observe an estimate of β that 
is sufficiently positive to lead to the rejection of the 
null hypothesis

• This can be illustrated by Figure 5.1

Figure 5.1 Rejecting a True Null Hypothesis 
Is a Type I Error Type I and Type II Errors (cont.)

• Alternatively, it’s possible to obtain an estimate 
of β that is close enough to zero (or negative) 
to be considered “not significantly positive” 

• Such a result may lead the researcher to 
“accept” the null hypothesis that β ≤ 0 when in 
truth β > 0

• This is a Type II Error; we have failed to reject a 
false null hypothesis!

• This can be illustrated by Figure 5.2
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Figure 5.2 Failure to Reject a False Null 
Hypothesis Is a Type II Error

Decision Rules of 
Hypothesis Testing

• To test a hypothesis, we calculate a sample statistic that 
determines when the null hypothesis can be rejected 
depending on the magnitude of that sample statistic relative to 
a preselected critical value (which is found in a statistical 
table)

• This procedure is referred to as a decision rule
• The decision rule is formulated before regression estimates 

are obtained
• The range of possible values of the estimates is divided into 

two regions, an “acceptance” (really, non-rejection) region 
and a rejection region

• The critical value effectively separates the “acceptance”/non-
rejection region from the rejection region when testing a null 
hypothesis

• Graphs of these “acceptance” and rejection regions are given 
in 
Figures 5.3 and 5.4

Figure 5.3 “Acceptance” and Rejection 
Regions for a One-Sided Test of β

Figure 5.4 “Acceptance” and Rejection 
Regions for a Two-Sided Test of β

The t-Test
• The t-test is the test that econometricians usually use to test 

hypotheses about individual regression slope coefficients
– Tests of more than one coefficient at a time (joint

hypotheses) are typically done with the F-test
• The appropriate test to use when the stochastic error term is 

normally distributed and when the variance of that 
distribution must be estimateddistribution must be estimated
– Since these usually are the case, the use of the t-test for 

hypothesis testing has become standard practice in 
econometrics

The t-Statistic

• For a typical multiple regression equation: 
(5.1)

we can calculate t-values for each of the estimated 
coefficients
– Usually these are only calculated for the slope coefficients, 

though (see Section 7.1) g ( )

• Specifically, the t-statistic for the kth coefficient is: 

(5.2
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The Critical t-Value and the 
t-Test Decision Rule

• To decide whether to reject or not to reject a null hypothesis 
based on a calculated t-value, we use a critical t-value

• A critical t-value is the value that distinguishes the 
“acceptance” region from the rejection region 

• The critical t-value, tc, is selected from a t-table (see Statistical 
Table B-1 in the back of the book) depending on:
– whether the test is one-sided or two-sided, 
– the level of Type I Error specified andthe level of Type I Error specified and 
– the degrees of freedom (defined as the number of 

observations minus the number of coefficients estimated 
(including the constant) or N – K – 1)

The Critical t-Value and the 
t-Test Decision Rule (cont.)

• The rule to apply when testing a single 
regression coefficient ends up being that you 
should:
Reject H0 if |tk| > tc and if tk also has the same 
sign implied by HA

Do not reject H0 otherwise

The Critical t-Value and the t-Test Decision 
Rule (cont.)

• Note that this decision rule works both for 
calculated t-values and critical t-values for 
one-sided hypotheses around zero (or another 
hypothesized value, S):

H0: βk ≤ 0 H0: βk ≤ S 
HA: βk > 0 HA: βk > S

H0: βk ≥ 0 H0: βk ≥ S 
HA: βk < 0 HA: βk < S

The Critical t-Value and the t-Test Decision 
Rule (cont.)

• As well as for two-sided hypotheses around 
zero (or another hypothesized value, S): 

H0: βk = 0 H0: βk = S 
HA: βk ≠ 0 HA: βk ≠ S

• From Statistical Table B-1 the critical t-value 
for a one-tailed test at a given level of 
significance is exactly equal to the criticalsignificance is exactly equal to the critical 
t-value for a two-tailed test at twice the level 
of significance of the one-tailed test—as also 
illustrated by Figure 5.5

Choosing a Level of Significance

• The level of significance indicates the probability of 
observing an estimated t-value greater than the critical
t-value if the null hypothesis were correct

• It also measures the amount of Type I Error implied by 
a particular critical t-value

• Which level of significance is chosen?
– 5 percent is recommended, unless you know 

something unusual about the relative costs of 
making Type I and Type II Errors

• The level of significance must be chosen before a 
critical value can be found, using Statistical Table B

Confidence Intervals

• A confidence interval is a range that contains the true value of an item a 
specified percentage of the time

• It is calculated using the estimated regression coefficient, the two-sided 
critical t-value and the standard error of the estimated coefficient as follows:

•
(5.5)

• What’s the relationship between confidence intervals and two-sidedWhat s the relationship between confidence intervals and two sided 
hypothesis testing? 

• If a hypothesized value fall within the confidence interval, then we cannot 
reject the null hypothesis
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p-Values

• This is an alternative to the t-test
• A p-value, or marginal significance level, is the probability of observing a t-

score that size or larger (in absolute value) if the null hypothesis were 
true

• Graphically, it’s two times the area under the curve of the t-distribution 
between the absolute value of the actual t-score and infinity. 

• In theory, we could find this by combing through pages and 
pages of statistical tables

• But we don’t have to, since we have EViews and Stata: these u e do a e o, s ce e a e e s a d Stata ese
(and other) statistical software packages automatically give the 
p-values as part of the standard output!

• In light of all this, the p-value decision rule therefore is:
Reject H0 if p-valueK < the level of significance and if      has the sign implied 
by HA

Limitations of the t-Test
• With the t-values being automatically printed out by computer 

regression packages, there is reason to caution against potential 
improper use of the t-test:
1. The t-Test Does Not Test Theoretical Validity:

If you regress the consumer price index on rainfall in
a time-series regression and find strong statistical 
significance does that also mean that the 
underlying theory is valid?  Of course not!

Limitations of the t-Test
The t-Test Does Not Test “Importance”:

The fact that one coefficient is “more statistically 
significant” than another does not mean that it is 
also more important in explaining the dependent 
variable—but merely that we have more evidence
of the sign of the coefficient in question

3. The t-Test Is Not Intended for Tests of the Entire 
Population:
From the definition of the t-score, given by Equation
5.2, it is seen that as the sample size approaches 
the population (whereby the standard error will 
approach zero—since the standard error decreases 
as N increases), the t-score will approach infinity!

Key Terms from Chapter 5

• Null hypothesis
• Alternative hypothesis
• Type I Error
• Level of significance
• Two-sided test
• Decision rule
• Critical value
• t-statistic

Chapter 6

SPECIFICATION: CHOOSING THE 
INDEPENDENT VARIABLES

Specifying an Econometric Equation and 
Specification Error

• Before any equation can be estimated, it must be completely 
specified

• Specifying an econometric equation consists of three parts, 
namely choosing the correct:
– independent variables
– functional form
– form of the stochastic error term 

• Again, this is part of the first classical assumption fromAgain, this is part of the first classical assumption from 
Chapter 4

• A specification error results when one of these choices is 
made incorrectly

• This chapter will deal with the first of these choices (the two 
other choices will be discussed in subsequent chapters)
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Omitted Variables
• Two reasons why an important explanatory variable might have 

been left out:
– we forgot…
– it is not available in the dataset, we are examining 

• Either way, this may lead to omitted variable bias
(or, more generally, specification bias)

• The reason for this is that when a variable is not included, it 
cannot be held constant

• Omitting a relevant variable usually is evidence that the entire 
equation is a suspect, because of the likely bias of the 
coefficients.

The Consequences of an 
Omitted Variable

• Suppose the true regression model is:
(6.1)

Where     is a classical error term
• If X2 is omitted, the equation becomes:

(6.2)
Where:

(6.3)
• Hence, the explanatory variables in the estimated regression 

(6.2) are not independent of the error term (unless the omitted 
variable is uncorrelated with all the included variables—
something which is very unlikely)

• But this violates Classical Assumption III! 

The Consequences of an Omitted Variable (cont.)
• What happens if we estimate Equation 6.2 when Equation 6.1 is 

the truth?
• We get bias!
• What this means is that:

(6.4)
• The amount of bias is a function of the impact of the omitted

variable on the dependent variable times a function of the 
correlation between the included and the omitted variable

• Or, more formally:
(6.7)

• So, the bias exists unless:
1. the true coefficient equals zero, or
2.the included and omitted variables are uncorrelated

Correcting for an Omitted Variable
• In theory, the solution to a problem of specification bias seems 

easy: add the omitted variable to the equation! 

• Unfortunately, that’s easier said than done, for a couple of 
reasons

1.Omitted variable bias is hard to detect: the amount of bias 
introduced can be small and not immediately detectable

2.Even if it has been decided that a given equation is suffering 
from omitted variable bias, how to decide exactly which
variable to include?

• Note here that dropping a variable is not a viable strategy to 
help cure omitted variable bias: 

– If anything you’ll just generate even more omitted variable 
bias on the remaining coefficients!

Correcting for an Omitted Variable (cont.)
• What if:

– You have an unexpected result, which leads you to believe 
that you have an omitted variable

– You have two or more theoretically sound explanatory 
variables as potential “candidates” for inclusion as the 
omitted variable to the equation is to use

• How do you choose between these variables?• How do you choose between these variables?
• One possibility is expected bias analysis

– Expected bias: the likely bias that omitting a particular 
variable would have caused in the estimated coefficient of 
one of the included variables

Correcting for an Omitted Variable (cont.)
• Expected bias can be estimated with Equation 6.7:

(6.7)
• When do we have a viable candidate?

– When the sign of the expected bias is the same
as the sign of the unexpected result

• Similarly, when these signs differ, the variable is 
extremely unlikely to have caused the unexpectedextremely unlikely to have caused the unexpected 
result
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Irrelevant Variables
• This refers to the case of including a variable in an equation 

when it does not belong there
• This is the opposite of the omitted variables case—and so the 

impact can be illustrated using the same model
• Assume that the true regression specification is:

(6.10)
• But the researcher for some reason includes an extra variable:

(6.11)
• The misspecified equation’s error term then becomes:

(6.12)

Irrelevant Variables (cont.)
• So, the inclusion of an irrelevant variable will not cause bias (since 

the true coefficient of the irrelevant variable is zero, and so the 
second term will drop out of Equation 6.12)

• However, the inclusion of an irrelevant variable will:

– Increase the variance of the estimated coefficients, and this 
increased variance will tend to decrease the absolute magnitude 
of their t-scoresof their t scores

– Decrease the adjusted R2 (but not the R2)

• Table 6.1 summarizes the consequences of the omitted variable and 
the included irrelevant variable cases (unless r12 = 0)

Table 6.1 Effect of Omitted Variables and 
Irrelevant Variables on the Coefficient Estimates

Four Important Specification Criteria
• We can summarize the previous discussion into four criteria to 

help decide whether a given variable belongs in the equation:
1. Theory: Is the variable’s place in the equation 

unambiguous and theoretically sound?
2. t-Test: Is the variable’s estimated coefficient significant in 

the expected direction?
3. R2: Does the overall fit of the equation (adjusted for 

d f f d ) i h th i bl i dd ddegrees of freedom) improve when the variable is added 
to the equation?

4. Bias: Do other variables’ coefficients change significantly 
when the variable is added to the equation?

• If all these conditions hold, the variable belongs in the 
equation

• If none of them hold, it does not belong
• The tricky part is the intermediate cases: use sound judgment!

Key Terms from Chapter 6
• Omitted variable
• Irrelevant variable
• Specification bias
• Specification error
• The four specification criteria
• Expected biasExpected bias

CHAPTER 7

SPECIFICATION: CHOOSING A 
FUNCTIONAL FORM
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The Use and Interpretation of 
the Constant Term

• An estimate of β0 has at least three components: 
1. the true β0
2. the constant impact of any specification errors (an omitted 

variable, for example)
3. the mean of ε for the correctly specified equation (if not 

equal to zero)
• Unfortunately, these components can’t be distinguished from 

one another because we can observe only β0, the sum of the y β0
three components

• As a result of this, we usually don’t interpret the constant term
• On the other hand, we should not suppress the constant term, 

either, as illustrated by Figure 7.1 

Figure 7.1 The Harmful Effect of Suppressing the 
Constant Term

Alternative Functional Forms

• An equation is linear in the variables if plotting the function in 
terms of X and Y generates a straight line

• For example, Equation 7.1:
Y = β0 + β1X + ε (7.1)

is linear in the variables but Equation 7.2:
Y = β0 + β1X2 + ε   (7.2)

is not linear in the variables
• Similarly, an equation is linear in the coefficients only if the 

coefficients appear in their simplest form—they:
– are not raised to any powers (other than one)
– are not multiplied or divided by other coefficients
– do not themselves include some sort of function (like logs

or exponents)

Alternative Functional Forms (cont.)

• For example, Equations 7.1 and 7.2 are linear in the 
coefficients, while Equation 7:3:

(7.3)
is not linear in the coefficients

• In fact, of all possible equations for a single explanatory 
variable, only functions of the general form:

(7.4)
are linear in the coefficients β0 and β1

Linear Form
• This is based on the assumption that the slope of the 

relationship between the independent variable and the 
dependent variable is constant:

• For the linear case, the elasticity of Y with respect to X (the 
percentage change in the dependent variable caused by a 1percentage change in the dependent variable caused by a 1-
percent increase in the independent variable, holding the other 
variables in the equation constant) is:

What Is a Log?
• If e (a constant equal to 2.71828) to the “bth power” produces 

x, then b is the log of x: 
b is the log of x to the base e if: eb = x

• Thus, a log (or logarithm) is the exponent to which a given base 
must be taken in order to produce a specific number

• While logs come in more than one variety, we’ll use only natural 
logs (logs to the base e) in this text

• The symbol for a natural log is “ln,” so ln(x) = b means that y g ( )
(2.71828) b = x or, more simply, 

ln(x) = b means that eb = x
• For example, since e2 = (2.71828) 2 = 7.389, we can state that:

ln(7.389) = 2 
Thus, the natural log of 7.389 is 2! Again, why? Two is the 
power of e that produces 7.389
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What Is a Log? (cont.)
• Let’s look at some other natural log calculations: 

ln(100) = 4.605
ln(1000) = 6.908 
ln(10000) = 9.210
ln(1000000) = 13.816
ln(100000) = 11.513

• Note that as a number goes from 100 to 1,000,000, its natural 
log goes from 4.605 to only 13.816! As a result, logs can be 
used in econometrics if a researcher wants to reduce the 
absolute size of the numbers associated with the same actual 
meaning

• One useful property of natural logs in econometrics is that they 
make it easier to figure out impacts in percentage terms (we’ll 
see this when we get to the double-log specification)

Double-Log Form

• Here, the natural log of Y is the dependent variable and the 
natural log of X is the independent variable:

(7.5)

• In a double-log equation, an individual regression coefficient 
can be interpreted as an elasticity because:

(7.6)

• Note that the elasticities of the model are constant and the 
slopes are not

• This is in contrast to the linear model, in which the slopes are 
constant but the elasticities are not

Figure 7.2 
Double-Log Functions Semilog Form

• The semilog functional form is a variant of the double-
log equation in which some but not all of the variables 
(dependent and independent) are expressed in terms 
of their natural logs. 

• It can be on the right-hand side, as in:
Yi = β0 + β1lnX1i + β2X2i + εi (7.7)

O i b h l ft h d id i• Or it can be on the left-hand side, as in:
lnY = β0 + β1X1 + β2X2 + ε (7.9)

• Figure 7.3 illustrates these two different cases

Figure 7.3 
Semilog Functions Polynomial Form

• Polynomial functional forms express Y as a function of 
independent variables, some of which are raised to powers 
other than 1

• For example, in a second-degree polynomial (also called a 
quadratic) equation, at least one independent variable is 
squared:

Yi = β0 + β1X1i + β2(X1i)2 + β3X2i + εi (7.10)

• The slope of Y with respect to X1 in Equation 7.10 is:

(7.11)

• Note that the slope depends on the level of X1
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Figure 7.4 
Polynomial Functions Figure 7.5 Inverse Functions

Table 7.1 Summary of Alternative Functional 
Forms Using Dummy Variables

• A dummy variable is a variable that takes on the 
values of 0 or 1, depending on whether a condition for 
a qualitative attribute (such as gender) is met

• These conditions take the general form:

(7.18)

• This is an example of an intercept dummy (as 
opposed to a slope dummy, which is discussed in 
Section 7.5) 

• Figure 7.6 illustrates the consequences of including an 
intercept dummy in a linear regression model

Figure 7.6 
An Intercept Dummy Slope Dummy Variables

• Contrary to the intercept dummy, which changed 
only the intercept (and not the slope), the slope 
dummy changes both the intercept and the slope

• The general form of a slope dummy equation is: 
Yi = β0 + β1Xi + β2Di + β3XiDi + εi (7.20)

• The slope depends on the value of D:
When D = 0, ∆Y/∆X = β1
When D = 1, ∆Y/∆X = (β1 + β3)

• Graphical illustration of how this works in Figure 7.7
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Figure 7.7 Slope and 
Intercept Dummies

Key Terms from Chapter 7
• Elasticity
• Double-log functional form
• Semilog functional form
• Polynomial functional form
• Inverse functional form
• Slope dummy
• Natural logNatural log
• Omitted condition
• Interaction term
• Linear in the variables
• Linear in the coefficients

CHAPTER 8

MULTICOLLINEARITY

Introduction and Overview
• The next three chapters deal with violations of the 

Classical Assumptions and remedies for those 
violations 

• This chapter addresses multicollinearity; the next 
two chapters are on serial correlation and 
heteroskedasticity

• For each of these three problems, we will attempt to 
th f ll i tianswer the following questions:

1. What is the nature of the problem?
2. What are the consequences of the problem?
3. How is the problem diagnosed?
4. What remedies for the problem are available?

Perfect Multicollinearity

• Perfect multicollinearity violates Classical Assumption VI, which 
specifies that no explanatory variable is a perfect linear function of 
any other explanatory variables

• The word perfect in this context implies that the variation in one 
explanatory variable can be completely explained by movements 
in another explanatory variable
– A special case is that of a dominant variable: an explanatoryA special case is that of a dominant variable: an explanatory

variable is  definitionally related to the dependent variable 

• An example would be (Notice: no error term!):

X1i = α0 + α1X2i (8.1)

where the αs are constants and the Xs are independent variables in:

Yi = β0 + β1X1i + β2X2i + εi (8.2)

• Figure 8.1 illustrates this case

Perfect Multicollinearity (cont.)
• What happens to the estimation of an econometric equation 

where there is perfect multicollinearity? 
– OLS is incapable of generating estimates of the 

regression coefficients
– most OLS computer programs will print out an error 

message in such a situation
• What is going on?What is going on?
• Essentially, perfect multicollinearity ruins our ability to estimate 

the coefficients because the perfectly collinear variables 
cannot be distinguished from each other:
• You cannot “hold all the other independent variables in the 

equation constant” if every time one variable changes, 
another changes in an identical manner!

• Solution: one of the collinear variables must be dropped (they 
are essentially identical, anyway)
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Imperfect Multicollinearity

• Imperfect multicollinearity occurs when two 
(or more) explanatory variables are imperfectly 
linearly related, as in:

X1i = α0 + α1X2i + ui (8.7)
• Compare Equation 8.7 to Equation 8.1p q q

– Notice that Equation 8.7 includes ui, a stochastic 
error term

The Consequences of Multicollinearity

There are five major consequences of 
multicollinearity: 

1. Estimates will remain unbiased
2. The variances and standard errors of the 

estimates 
will increase:

a Harder to distinguish the effect of one variable froma. Harder to distinguish the effect of one variable from 
the effect of another, so much more likely to make 
large errors in estimating the βs than without 
multicollinearity

b. As a result, the estimated coefficients, although still 
unbiased, now come from distributions with much larger 
variances and, therefore, larger standard errors (this 
point is illustrated in Figure 8.3)

Figure 8.3 Severe Multicollinearity Increases the 
Variances of the    s

The Consequences of Multicollinearity (cont.)
3. The computed t-scores will fall:

a. Recalling Equation 5.2, this is a direct consequence of 2. above
4. Estimates will become very sensitive to changes in specification:

a. The addition or deletion of an explanatory variable or of a few 
observations will often cause major changes in the values of the   s
when significant multicollinearity exists

b. For example, if you drop a variable, even one that appears to be 
statistically insignificant, the coefficients of the remaining variables instatistically insignificant, the coefficients of the remaining variables in 
the equation sometimes will change dramatically

c. This is again because with multicollinearity, it is much harder to 
distinguish the effect of one variable from the effect of another

5. The overall fit of the equation and the estimation of the coefficients of 
nonmulticollinear variables will be largely unaffected

The Detection of Multicollinearity
• First realize that that some multicollinearity exists in every

equation: all variables are correlated to some degree (even if 
completely at random)

• So it’s really a question of how much multicollinearity exists in 
an equation, rather than whether any multicollinearity exists

• There are basically two characteristics that help detect the 
degree of multicollinearity for a given application:degree of multicollinearity for a given application:
1. High simple correlation coefficients
2. High Variance Inflation Factors (VIFs)

• We will now go through each of these in turn:

High Simple Correlation Coefficients
• If a simple correlation coefficient, r, between any two 

explanatory variables is high in absolute value, these two 
particular Xs are highly correlated and multicollinearity is a 
potential problem

• How high is high? 
– Some researchers pick an arbitrary number, such as 0.80
– A better answer might be that r is high if it causes 

unacceptably large variances in the coefficient estimates in p y g
which we’re interested. 

• Caution in case of more than two explanatory variables: 
– Groups of independent variables, acting together, may 

cause multicollinearity without any single simple correlation 
coefficient being high enough to indicate that multicollinearity 
is present

– As a result, simple correlation coefficients must be 
considered to be sufficient but not necessary tests for 
multicollinearity
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High Variance Inflation Factors (VIFs)
• The variance inflation factor (VIF) is calculated from two steps:

1. Run an OLS regression that has Xi as a function of all the other 
explanatory variables in the equation—For i = 1, this equation would 
be:

• X1 = α1 + α2X2 + α3X3 + … + αKXK + v (8.15)

• where v is a classical stochastic error term

2 C l l t th i i fl ti f t f2. Calculate the variance inflation factor for     :

(8.16)

• where      is the unadjusted      from step one

High Variance Inflation Factors (VIFs) (cont.)
• From Equation 8.16, the higher the VIF, the more severe the effects of 

mulitcollinearity
• How high is high?
• While there is no table of formal critical VIF values, a common rule of thumb is that if 

a given VIF is greater than 5, the multicollinearity is severe
• As the number of independent variables increases, it makes sense to increase

this number slightly
• Note that the authors replace the VIF with its reciprocal,                 , called 

t l TOLtolerance, or TOL
• Problems with VIF:

– No hard and fast VIF decision rule
– There can still be severe multicollinearity even with small VIFs
– VIF is a sufficient, not necessary, test for multicollinearity

Remedies for Multicollinearity
Essentially three remedies for multicollinearity:
1. Do nothing:

a. Multicollinearity will not necessarily reduce the t-scores 
enough to make them statistically insignificant and/or 
change the estimated coefficients to make them differ from 
expectations

b. the deletion of a multicollinear variable that belongs in an 
equation will cause specification bias

2. Drop a redundant variable:
a. Viable strategy when two variables measure essentially 

the same thing 
b. Always use theory as the basis for this decision

Remedies for Multicollinearity (cont.)
3. Increase the sample size:

a. This is frequently impossible but a useful alternative to be 
considered if feasible

b. The idea is that the larger sample normally will reduce the 
variance of the estimated coefficients, diminishing

the impact of the multicollinearity

Key Terms from Chapter 8
• Perfect multicollinearity
• Severe imperfect multicollinearity
• Dominant variable
• Auxiliary (or secondary) equation
• Variance inflation factor
• Redundant variable

CHAPTER 9

SERIAL CORRELATION
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Pure Serial Correlation
• Pure serial correlation occurs when Classical Assumption 

IV, which assumes uncorrelated observations of the error 
term, is violated (in a correctly specified equation!)

• The most commonly assumed kind of serial correlation is first-
order serial correlation, in which the current value of the error 
term is a function of the previous value of the error term:

εt = ρεt–1 + ut (9.1)
where: ε = the error term of the equation in question

ρ = the first-order autocorrelation coefficient
u = a classical (not serially correlated) error term

Pure Serial Correlation (cont.)

• The magnitude of ρ indicates the strength of the serial 
correlation:
– If ρ is zero, there is no serial correlation
– As ρ approaches one in absolute value, the previous observation 

of the error term becomes more important in determining the 
current value of εt and a high degree of serial correlation exists
For ρ to exceed one is unreasonable since the error term– For ρ to exceed one is unreasonable, since the error term 
effectively would “explode”

• As a result of this, we can state that:
–1 < ρ < +1 (9.2)

Pure Serial Correlation (cont.)

• The sign of ρ indicates the nature of the serial correlation in 
an equation:

• Positive:
– implies that the error term tends to have the same sign from one 

time period to the next
– this is called positive serial correlation

• Negative:
implies that the error term has a tendency to switch signs from– implies that the error term has a tendency to switch signs from 
negative to positive and back again in consecutive observations

– this is called negative serial correlation
• Figures 9.1–9.3 illustrate several different scenarios 

Figure 9.1a 
Positive Serial Correlation

Figure 9.1b 
Positive Serial Correlation

Figure 9.2 
No Serial Correlation
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Figure 9.3a 
Negative Serial Correlation

Figure 9.3b 
Negative Serial Correlation

Impure Serial Correlation

• Impure serial correlation is serial correlation that is caused by a 
specification error such as:

– an omitted variable and/or 
– an incorrect functional form 

• How does this happen?
• As an example, suppose that the true equation is:

(9.3)
where εt is a classical error term. As shown in Section 6.1, if X2 is 
accidentally omitted from the equation (or if data for X2 are unavailable), 
then:

(9.4)
• The error term is therefore not a classical error term

Impure Serial Correlation (cont.)

• Instead, the error term is also a function of one of the 
explanatory variables, X2

• As a result, the new error term, ε** , can be serially 
correlated even if the true error term ε, is not

• In particular, the new error term will tend to be serially 
correlated when:
1. X2 itself is serially correlated (this is quite likely in a 2 y ( q y

time series) and
2. the size of ε is small compared to the size of 

• Figure 9.4 illustrates 1., for the case of U.S. disposable 
income

Impure Serial Correlation (cont.)

• Turn now to the case of impure serial correlation caused 
by an incorrect functional form

• Suppose that the true equation is polynomial in nature:
(9.7)

but that instead a linear regression is run:
(9 8)(9. 8)

• The new error term ε** is now a function of the true error 
term and of the differences between the linear and the 
polynomial functional forms

• Figure 9.5 illustrates how these differences often follow 
fairly

Figure 9.5a Incorrect Functional Form as a 
Source of Impure Serial Correlation
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Figure 9.5b Incorrect Functional Form as a 
Source of Impure Serial Correlation The Consequences of Serial Correlation

• The existence of serial correlation in the error term of an 
equation violates Classical Assumption IV, and the 
estimation of the equation with OLS has at least three 
consequences: 

1. Pure serial correlation does not cause bias in the 
coefficient estimates

2. Serial correlation causes OLS to no longer be the2. Serial correlation causes OLS to no longer be the 
minimum variance estimator (of all the linear unbiased 
estimators)

3. Serial correlation causes the OLS estimates of the SE to 
be biased, leading to unreliable hypothesis testing. 
Typically the bias in the SE estimate is negative, 
meaning that OLS underestimates the standard errors 
of the coefficients (and thus overestimates the t-scores)

The Durbin–Watson d Test
• Two main ways to detect serial correlation:

– Informal: observing a pattern in the residuals like that in 
Figure 9.1

– Formal: testing for serial correlation using the Durbin–
Watson d test

• We will now go through the second of these in detail
• First, it is important to note that the Durbin–Watson d test is 

only applicable if the following three assumptions are met:y pp g p
1. The regression model includes an intercept term
2. The serial correlation is first-order in nature: 

εt = ρεt–1 + ut
where ρ is the autocorrelation coefficient and u is a classical 
(normally distributed) error term

3. The regression model does not include a lagged 
dependent variable

(discussed in Chapter 12) as an independent variable

The Durbin Watson 
d Test (cont.)

• The equation for the Durbin–Watson d statistic for T 
observations is:

(9.10)

where the ets are the OLS residuals 
• There are three main cases:There are three main cases:

1. Extreme positive serial correlation: d = 0
2. Extreme negative serial correlation: d ≈ 4
3. No serial correlation: d ≈ 2

The Durbin Watson 
d Test (cont.)

• To test for positive (note that we rarely, if ever, test
for negative!) serial correlation, the following steps are 
required:

1. Obtain the OLS residuals from the equation to be 
tested and calculate the d statistic by using 
Equation 9.10

2 Determine the sample size and the number of2. Determine the sample size and the number of 
explanatory variables and then consult 

Statistical Tables B-4, B-5, or B-6 in Appendix B
to find the upper critical d value, dU, and the lower 
critical d value, dL, respectively (instructions for the 
use of these tables are also in that appendix)

The Durbin–Watson 
d Test (cont.)

• 3. Set up the test hypotheses and decision rule:
• H0: ρ ≤ 0 (no positive serial correlation)
• HA: ρ > 0 (positive serial correlation)

• if d < dL Reject H0

• if d > dU Do not reject H0U j 0

• if dL ≤ d ≤ dU Inconclusive
• In rare circumstances, perhaps first differenced equations, 

a two-sided d test might be appropriate
• In such a case, steps 1 and 2 are still used, but step 3 is now:



2010/09/20

28

The Durbin–Watson 
d Test (cont.)

• 3. Set up the test hypotheses and decision rule:

• H0: ρ = 0 (no serial correlation)

• HA: ρ ≠ 0 (serial correlation)

•

• if d < dL Reject H0

if d > 4 d R j t H• if d > 4 – dL Reject H0

• if 4 – dU > d > dU Do Not Reject H0

• Otherwise Inconclusive

• Figure 9.6 gives an example of a one-sided Durbin Watson d
test

Figure 9.6 An Example of a One-Sided Durbin–
Watson d Test

Remedies for Serial Correlation

• The place to start in correcting a serial correlation problem is to look 
carefully at the specification of the equation for possible errors that 
might be causing impure serial correlation:
– Is the functional form correct? 
– Are you sure that there are no omitted variables?
– Only after the specification of the equation has bee reviewed carefully 

should the possibility of an adjustment for pure serial correlation be y j
considered

• There are two main remedies for pure serial correlation: 
– 1. Generalized Least Squares 

– 2. Newey-West standard errors

• We will no discuss each of these in turn

Generalized Least Squares

• Start with an equation that has first-order serial correlation:

•
(9.15)

• Which, if εt = ρεt–1 + ut (due to pure serial correlation), also equals:

•
(9.16)

9 1• Multiply Equation 9.15 by ρ and then lag the new equation by one period, 
obtaining:

•
(9.17)

Generalized Least Squares (cont.)

• Next, subtract Equation 9.107 from Equation 9.16, obtaining:

•
(9.18)

• Finally, rewrite equation 9.18 as:

• Finally, rewrite equation 9.18 as:

•
(9 19)(9.19)

•
(9.20)

Generalized Least Squares (cont.)

• Equation 9.19 is called a Generalized Least Squares
(or “quasi-differenced”) version of Equation 9.16. 

• Notice that: 
1.The error term is not serially correlated

a. As a result, OLS estimation of Equation 9.19 will be 
minimum variance

b This is true if we know ρ or if we accurately estimate ρ)b. This is true if we know ρ or if we accurately estimate ρ)

2.The slope coefficient β1 is the same as the slope 
coefficient of the original serially correlated equation, 
Equation 9.16. Thus coefficients estimated with GLS 
have the same meaning as those estimated with 
OLS.
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Generalized Least Squares (cont.)

3. The dependent variable has changed compared to 
that in Equation 9.16. This means that the GLS is 
not directly comparable to the OLS. 

4. To forecast with GLS, adjustments like those 
discussed in Section 15.2 are required

• Unfortunately, we cannot use OLS to estimate a GLS 
model because GLS equations are inherently nonlinearmodel because GLS equations are inherently nonlinear
in the coefficients

• Fortunately, there are at least two other methods
available:

The Cochrane–Orcutt Method

• Perhaps the best known GLS method 
• This is a two-step iterative technique that first produces an 

estimate of ρ and then estimates the GLS equation using that 
estimate. 

• The two steps are:
1. Estimate ρ by running a regression based on the residuals of the equation 

suspected of having serial correlation: 
– et = ρet–1 + t t 1

ut (9.21) 
– where the ets are the OLS residuals from the equation suspected of having 

pure serial correlation and ut is a classical error term
2. Use this    to estimate the GLS equation by substituting into Equation 9.18 and 

using OLS to estimate Equation 9.18 with the adjusted data

• These two steps are repeated (iterated) until further iteration results in 
little change in  

• Once    has converged (usually in just a few iterations), the last estimate of 
step 2 is used as a final estimate of Equation 9.18

The AR(1) Method

• Perhaps a better alternative than Cochrane–Orcutt for GLS 
models

• The AR(1) method estimates a GLS equation like Equation 9.18 
by estimating β0, β1 and ρ simultaneously with iterative 
nonlinear regression techniques (that are well beyond the 
scope of this chapter!)

• The AR(1) method tends to produce the same coefficient 
estimates as Cochrane–Orcutt
H th ti t d t d d ll• However, the estimated standard errors are smaller

• This is why the AR(1) approach is recommended as long as your 
software can support such nonlinear regression

Newey–West Standard Errors

• Again, not all corrections for pure serial correlation 
involve Generalized Least Squares

• Newey–West standard errors take account of serial 
correlation by correcting the standard errors without 
changing the estimated coefficients 

• The logic begin Newey–West standard errors is 
powerful:
– If serial correlation does not cause bias in the estimated 

coefficients but does impact the standard errors, then it makes 
sense to adjust the estimated equation in a way that changes
the standard errors but not the coefficients

Newey–West Standard Errors (cont.)

• The Newey–West SEs are biased but generally more accurate than 
uncorrected standard errors for large samples in the face of serial 
correlation

• As a result, Newey–West standard errors can be used for 
t-tests and other hypothesis tests in most samples without the errors of 
inference potentially caused by serial correlation

• Typically, Newey–West SEs are larger than OLS SEs, thus producing 
lower t-scores

Key Terms from Chapter 9

• Impure serial correlation
• First-order serial correlation
• First-order autocorrelation coefficient
• Durbin–Watson d statistic
• Generalized Least Squares (GLS)• Generalized Least Squares (GLS)
• Positive serial correlation
• Newey–West standard errors
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CHAPTER 9

HETEROSCEDASTICITY

Pure Heteroskedasticity

• Pure heteroskedasticity occurs when Classical 
Assumption V, which assumes constant variance of 
the error term, is violated (in a correctly specified 
equation!)

• Classical Assumption V assumes that:
(10.1)(10.1)

• With heteroskedasticity, this error term variance is not 
constant

Pure Heteroskedasticity (cont.)

• Instead, the variance of the distribution of the error term 
depends on exactly which observation is being 
discussed:

(10.2)
• The simplest case is that of discrete 

heteroskedasticity, where the observations of the error y
term can be grouped into just two different distributions, 
“wide” and “narrow” 

• This case is illustrated in Figure 10.1

Pure Heteroskedasticity (cont.)

• Heteroskedasticity takes on many more complex forms, 
however, than the discrete heteroskedasticity case

• Perhaps the most frequently specified model of pure 
heteroskedasticity relates the variance of the error term to an 
exogenous variable Zi as follows:

(10.3)(10.3)
(10.4)

where Z, the “proportionality factor,” may or may not be in 
the equation

• This is illustrated in Figures 10.2 and 10.3

Impure Heteroskedasticity

• Similar to impure serial correlation, impure heteroskedasticity is 
heteroskedasticity that is caused by a specification error

• Contrary to that case, however, impure heteroskedasticity almost always 
originates from an omitted variable (rather than an incorrect functional 
form)

• How does this happen?
– The portion of the omitted effect not represented by one of the included 

explanatory variables must be absorbed by the error term.p y y
– So, if this effect has a heteroskedastic component, the error term of the 

misspecified equation might be heteroskedastic even if the error term of the true 
equation is not!

• This highlights, again, the importance of first checking that the 
specification is correct before trying to “fix” things…

The Consequences of Heteroskedasticity

• The existence of heteroskedasticity in the error term of an 
equation violates Classical Assumption V, and the 
estimation of the equation with OLS has at least three 
consequences: 
1. Pure heteroskedasticity does not cause bias in the coefficient 

estimates
2 Heteroskedasticity typically causes OLS to no longer be the2. Heteroskedasticity typically causes OLS to no longer be the 

minimum variance estimator (of all the linear unbiased 
estimators)

3. Heteroskedasticity causes the OLS estimates of the SE to be 
biased, leading to unreliable hypothesis testing. Typically 
the bias in the SE estimate is negative, meaning that OLS 

underestimates the standard errors (and thus overestimates
the 
t-scores)
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Testing for Heteroskedasticity

• Econometricians do not all use the same test for heteroskedasticity because 
heteroskedasticity takes a number of different forms, and its precise 
manifestation in a given equation is almost never known

• Before using any test for heteroskedasticity, however, ask the following:
1. Are there any obvious specification errors? 

– Fix those before testing!
2. Is the subject of the research likely to be afflicted with 

heteroskedasticity? 
– Not only are cross-sectional studies the most frequent source of 

h t k d ti it b t ti l t di ith l i ti i thheteroskedasticity, but cross-sectional studies with large variations in the 
size of the dependent variable are particularly susceptible to 
heteroskedasticity

3. Does a graph of the residuals show any evidence of 
heteroskedasticity? 

– Specifically, plot the residuals against a potential Z proportionality factor
– In such cases, the graph alone can often show that heteroskedasticity is or 

is not likely
– Figure 10.4 shows an example of what to look for: an expanding (or 

contracting) range of the residuals

The Park Test

The Park test has three basic steps: 
1. Obtain the residuals of the estimated regression 

equation:
(10.6)

2. Use these residuals to form the dependent variable in a 
second regression:second regression:

(10.7)
where: ei = the residual from the ith observation from 
Equation 10.6

Zi = your best choice as to the possible 
proportionality factor (Z)

ui = a classical (homoskedastic) error term

The Park Test

3. Test the significance of the coefficient of Z in 
Equation 10.7 with a t-test:

– If the coefficient of Z is statistically significantly different 
from zero, this is evidence of heteroskedastic patterns in the 
residuals with respect to Z

– Potential issue: How do we choose Z in the first place?

The White Test

• The White test also has three basic steps:
1. Obtain the residuals of the estimated regression equation:

• – This is identical to the first step in the Park test

2. Use these residuals (squared) as the dependent variable in a 
second equation that includes as explanatory variables each X 
from the original equation, the square of each X, and the product g q , q , p
of each X times every other X—for example, in the case of three 
explanatory variables:

The White Test (cont.)

3. Test the overall significance of Equation 10.9 with the 
chi-square test
• – The appropriate test statistic here is NR2, or the sample size 

(N) times the coefficient of determination (the unadjusted R2) of 
Equation 10.9

• – This test statistic has a chi-square distribution with degrees 
of freedom equal to the number of slope coefficients in Equation 10.9

• – If NR2 is larger than the critical chi-square value found in 
Statistical Table B-8, then we reject the null hypothesis and conclude 
that it's likely that we have heteroskedasticity

• – If NR2 is less than the critical chi-square value, then we 
cannot reject the null hypothesis of homoskedasticity

Remedies for Heteroskedasticity

• The place to start in correcting a heteroskedasticity problem is to 
look carefully at the specification of the equation for possible errors 
that might be causing impure heteroskedasticity :

– Are you sure that there are no omitted variables?

– Only after the specification of the equation has been reviewed 
carefully should the possibility of an adjustment for pure 
heteroskedasticity be consideredy

• There are two main remedies for pure heteroskedasticit1

1. Heteroskedasticity-corrected standard errors

2. Redefining the variables

• We will now discuss each of these in turn:
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Heteroskedasticity-Corrected Standard 
Errors

• Heteroskedasticity-corrected errors take account of 
heteroskedasticity correcting the standard errors 
without changing the estimated coefficients

• The logic behind heteroskedasticity-corrected standard 
errors is power

If h t k d ti it d t bi i th ti t d– If heteroskedasticity does not cause bias in the estimated 
coefficients but does impact the standard errors, then it 
makes sense to adjust the estimated equation in a way that 
changes the standard errors but not the coefficients

Heteroskedasticity-Corrected Standard 
Errors (cont.)

• The heteroskedasticity-corrected SEs are biased but 
generally more accurate than uncorrected standard 
errors for large samples in the face of 
heteroskedasticity

• As a result, heteroskedasticity-corrected standard errors 
can be used for t-tests and other hypothesis tests incan be used for t tests and other hypothesis tests in 
most samples without the errors of inference potentially 
caused by heteroskedasticity

• Typically heteroskedasticity-corrected SEs are larger
than OLS SEs, thus producing lower t-scores

Redefining the Variables

• Sometimes it’s possible to redefine the variables in a 
way that avoids heteroskedasticity

• Be careful, however:
– Redefining your variables is a functional form specification 

change that can dramatically change your equation!

• In some cases, the only redefinition that's needed to rid 
an equation of heteroskedasticity is to switch from a 
linear functional form to a double-log functional form:

– The double-log form has inherently less variation than the 
linear form, so it's less likely to encounter heteroskedasticity

Redefining the Variables (cont.)

• In other situations, it might be necessary to completely 
rethink the research  project in terms of its underlying 
theory

• For example, a cross-sectional model of the total 
expenditures by the governments of different cities may 
generate heteroskedasticity by containing both largegenerate heteroskedasticity by containing both large 
and small cities in the estimation sample

• Why?
– Because of the proportionality factor (Z) the size of the 

cities

Redefining the Variables (cont.)

• This is illustrated in Figure 10.5

• In this case, per capita expenditures would be a logical 
dependent variable

• Such a transformation is shown in Figure 10.6

• Aside: Note that Weighted Least Squares (WLS) thatAside: Note that Weighted Least Squares (WLS), that 
some authors suggest as a remedy for 
heteroskedasticity, has some serious potential 
drawbacks and can therefore generally is not be 
recommended (see Footnote 14, p. 355, for details)

Key Terms from Chapter 10

• Impure heteroskedasticity
• Pure heteroskedasticity
• Proportionality factor Z
• The Park test
• The White test
• Heteroskedasticity-corrected standard errors
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