TIME VALUE OF MONEY
 Study Unit 10

FAC1601

- Simple interest
- Compound interest
- Present value
- Future value
- Annuities

SYMBOLS USED

- $\mathfrak{i}=$ interest
- $\mathrm{n}=$ period
- PV = Present value
- FV = Future value

SIMPLE INTEREST

- Interest calculated on ONLY the principal amount.
- Principal amount + interest = future value
- Example
- Invest R100 000 at 6\% interest for 3 years:
- Principal 100000
- Interest (100 $000 \times 0.06 \times 3$) 18000
- Thus: Future value

118000

- Thus:
- Future value = Principal x [1 + (i x n)]
- Principal = FV / [1+(ixn)]

COMPOUND INTEREST

- Interest on interest (capitalised interest)
- Interest is added to principal amount and 'new' interest is calculated on total.
- Using previous example:
- Year 1
- Principal amount

100000

- Interest ($100000 \times 6 \%$)

6000

- Year 2

106000

- Interest (106 $000 \times 6 \%$)

6360

- Year 3

112360

- Interest (112 $360 \times 6 \%$)

6742
© Thus:

- Principal (Present value)

100000

- Total interest

19102

- Future value

119102

PRESENT VALUE

- Current value of future cash flows
- Use discounting rate
- If compound interest

$$
P V=\left[\frac{F V}{(1+i)^{n}}\right]
$$

- If simple interest

$$
P V=\left[\frac{F V}{\{1+(i \times n)\}}\right]
$$

FUTURE VALUE

๑ End value of amount invested in present

- If compound interest:

$$
F V=P V(1+i)^{n}
$$

- If simple interest

$$
F V=P V[1+(i \times n)]
$$

ANNUITIES

- Series of equal payments
- Made at equal intervals of time (payment period)
- Term
- Period between first \& last payment
- Various types
- FAC1601 \rightarrow only deal with ordinary annuities
- Payment made at the end of each period

ANNUITIES = FUTURE VALUE

- Formula

$$
F V A=P m t \times\left[\frac{(1+i)^{n}-1}{i}\right]
$$

- Table
- Table 2: Future value of an Annuity of R1 invested for n periods.
- Use intersection between applicable period and interest rate \rightarrow factor
- FV = PV x factor
- HP Calculator
- PV $=0$ (Amounts are only invested/paid at the end of each period)
- PMT = amount paid/invested at end of each period
- I/YR = interest rate
- $\mathrm{N}=$ periods
- $\mathrm{FV}=$?

ANNUITIES - PRESENT VALUE

- Value at beginning of initial period
- Discounted value
- Formula

$$
P V A=P m t \times \frac{1-\left[\frac{1}{(1+i)^{n}}\right]}{i}
$$

- Table
- Table $4 \rightarrow$ Payment x factor per table
- HP
- PMT = payment per period
- $\mathrm{N}=$ number of periods
- Number of periods per year x number of years.
- I/YR = interest per period
- If periods are not annual, remember to adjust rate
- E.g. 16\% per annum, but periods are quarterly, interest per period = $16 / 4=4 \%$.
- PV ??

