TIME VALUE OF MONEY Study Unit 10

FAC1601

- Simple interest
- Compound interest
- Present value
- Future value
- Annuities

SYMBOLS USED

- i = interest
- n = period
- PV = Present value
- FV = Future value

SIMPLE INTEREST

- Interest calculated on ONLY the principal amount.
 - Principal amount + interest = future value
- Example
 - Invest R100 000 at 6% interest for 3 years:
 - Principal 100 000
 - Interest (100 000 x 0.06 x 3)
 <u>18 000</u>
 - Thus: Future value

<u>18 000</u> 118 000

• Thus:

- Future value = Principal x [1 + (i x n)]
- Principal = FV / [1+(i x n)]

COMPOUND INTEREST

Interest on interest (capitalised interest)

 Interest is added to principal amount and 'new' interest is calculated on total.

• Using previous example:

• Year 1

 Principal amount 	100 000
 Interest (100 000 x 6%) 	<u>6 000</u>
• Year 2	106 000
 Interest (106 000 x 6%) 	<u>6 360</u>
• Year 3	112 360
 Interest (112 360 x 6%) 	6 742
Thus:	
Principal (Present value)	100 000
Total interest	19 102
Future value	119 102

PRESENT VALUE

Current value of future cash flows

Use discounting rate

• If compound interest $PV = \left[\frac{FV}{(1+i)^n}\right]$

If simple interest

$$PV = \left[\frac{FV}{\{1 + (i \times n)\}}\right]$$

FUTURE VALUE

• End value of amount invested in present

• If compound interest: $FV = PV(1 + i)^n$

• If simple interest $FV = PV[1 + (i \times n)]$

ANNUITIES

Series of equal payments

• Made at equal intervals of time (payment period)

Term

• Period between first & last payment

Various types

• FAC1601 \rightarrow only deal with ordinary annuities

• Payment made at the <u>end</u> of each period

ANNUITIES - FUTURE VALUE

Formula

$$FVA = Pmt \times \left[\frac{(1+i)^n - 1}{i}\right]$$

Table

- Table 2: Future value of an Annuity of R1 invested for n periods.
- Use intersection between applicable period and interest rate \rightarrow factor
- FV = PV x factor

• HP Calculator

- PV = 0 (Amounts are only invested/paid at the <u>end</u> of each period)
- PMT = amount paid/invested at end of each period
- I/YR = interest rate
- N = periods
- FV = ?

ANNUITIES - PRESENT VALUE

Value at beginning of initial period

- Discounted value
- Formula

$$PVA = Pmt \times \frac{1 - \left[\frac{1}{(1+i)^n}\right]}{i}$$

Table

• Table 4 \rightarrow Payment x factor per table

• HP

- PMT = payment per period
- N = number of periods
 - Number of periods per year x number of years.
- I/YR = interest per period
 - If periods are not annual, remember to adjust rate
 - E.g. 16% per annum, but periods are quarterly, interest per period = 16/4 = 4%.
- PV ??