

DSC1630 (459040) May/June 2009
QMG102Q (496724)
QMS102E (494136)
RQG102M (469751)
RQM102G (454870)

INTRODUCTORY FINANCIAL MATHEMATICS

Duration 2 Hours 100 Marks

EXAMINERS:

FIRST:

MRS S ROTHMANN MISS J LE ROUX

Programmable pocket calculator is permissible.

This paper consists of 17 pages including a list of formulæ, a table with the number of each day of the year and four sheets of paper for rough work, plus instructions for completing a mark-reading sheet.

Please complete the attendance register on the back page, tear it off and hand it to the invigilator.

Answer all questions on the mark-reading sheet supplied Carefully follow the instructions for completing the mark-reading sheet. Also pay attention to the following:

- Only one option (indicated as [1] [2] [3] [4] [5]) per question is correct. Do not mark more than one option per question on the mark-reading sheet.
- Marks will not be deducted for incorrect answers
- There are 30 questions for a total of 100 marks.

You are strongly advised to write your name on the mark-reading sheet. Then, if you have entered your student number incorrectly, we will still be able to link you to the mark-reading sheet.

An amount of R4317,26 was borrowed on 5 May at a simple interest rate of 15% per year. The loan will be worth R4500 on

- [1] 12 August.
- [2] 16 August.
- [3] 21 August.
- [4] 9 October.
- [5] none of the above.

Question 2

Lucia wants to buy a television set for R3 500 and borrows the money from the bank at a discount rate of 13% per year. The amount that Lucia will pay the bank in 10 months' time equals

- [1] R3 120,83.
- [2] R3 142,48.
- [3] R3 879,17.
- [4] R3 898,20.
- [5] R3 925,23.

Question 3

A simple interest rate of 18,58% over a time period of 63 days is equivalent to a simple discount rate of

- [1] 18,00%.
- [2] 18,02%.
- [3] 18,58%.
- [4] 19,20%.
- [5] none of the above.

Question 4

A continuous compounding rate of 12,57% is equivalent to a nominal rate, per year, compounded quarterly, of

- [1] 12,02%.
- [2] 12,38%.
- [3] 12,57%.
- [4] 12,77%.
- [5] **13,18%**.

Mary invested R40 000 in order to have R56 000 available in 30 months' time. The yearly rate, compounded semi-annually, equals

- [1] 7,205%.
- [2] 8%.
- [3] 13,92%.
- [4] 14,41%.
- [5] 16%.

Question 6

An interest rate of 14,9% per year, compounded quarterly, is equivalent to a weekly compounded interest rate of

- [1] 14,65%.
- [2] 14,88%.
- [3] 15,16%.
- [4] 19,02%.
- [5] none of the above.

Question 7

A continuous compounding rate of 11,8% is equivalent to an effective rate of

- [1] 11,15%.
- [2] 11,8%.
- [3] 12,52%.
- [4] 43,06%.
- [5] none of the above.

Question 8

Tito bought a stamp collection for R140000. For 10 years the value of the collection increased yearly by 28%. Thereafter the value increased yearly by 5%. The amount of money that Tito can expect to receive if he sells his collection after owning it for 19 years equals approximately

- [1] R353 773.
- [2] R739 200
- [3] R771 400.
- [4] R1 017 800.
- [5] R2 564 079.

Questions 9 and 10 relate to the following situation:

Three years ago Raphael borrowed R10000 from Pinky on the condition that he should pay her back two years from now. He will also pay her R6000 five years from now. The applicable interest rate for both transactions is 13,75% per year, compounded half yearly.

Question 9

The amount of money that Raphael will owe Pinky two years from now equals

- [1] R16 000,00.
- [2] R17 988,38.
- [3] R18 928,61.
- [4] R22 528,86.
- [5] R23 469,10.

Question 10

After seeing what he owes Pinky, Raphael asks Pinky if he can pay her R9 000 now and the rest in four years' time. She agrees on the condition that the new agreement will run from now and that an interest rate of 16,28% per year, compounded monthly, will be applicable from now. The amount that Raphael will have to pay Pinky four years from now equals

- [1] R8 988,38.
- [2] R13 366,24.
- [3] R15 245,21.
- [4] R17162,98.
- [5] R23 430,38.

Question 11

The MIRR for a project lasting 11 years is 9,9%. The present value of the cash outflows equals R164 100. The future value of the cash inflows equals approximately

- [1] R52 129.
- [2] R58 094.
- [3] R146 925.
- [4] R463 535.
- [5] R1 657 576.

Manto is considering buying a baby-food factory. She can borrow money at 22,4% interest per year to cover the following cash outflows

Years	Cash outflows
	R
4	500 000
6	250 000
8	150 000
9	700 000

The present value of the cash outflows equals approximately

- [1] R440 401
- [2] R1 186 098.
- [3] R1 600 000.
- [4] R2 175 028.
- [5] none of the above.

Question 13

A loan of x rand is to be repaid in 25 payments. The first 15 payments are R2000 each, paid at the beginning of each month. Thereafter the payments are R4000 each per month, paid at the end of each month. The present value of this loan can be denoted by the equation

- [1] $x = (1+i)6000a_{\overline{25}|_1}$
- $[2] x = 2000a_{\overline{15}} + 4000a_{\overline{10}}.$
- [3] $x = (1+i)2000a_{\overline{15}i} + 4000a_{\overline{10}i}$.
- [4] $x = (1+i)2000a_{\overline{15}|_{1}} + 4000a_{\overline{10}|_{1}}(1+i)^{-15}$.
- $(5) x = (1+i)2000s_{\overline{10}}, +4000s_{\overline{10}}.$

Question 14

A loan is repaid in 20 monthly payments. The first 12 payments will be R3 000 each, paid at the end of each month. Thereafter the payments will be R6 000 each per month, paid at the beginning of each month. An interest rate of 19,6% per year, compounded monthly, is applicable. The present value of this loan equals

- [1] R32 452,37
- [2] R69 818,64.
- [3] R77 108,15.
- [4] R77 837,53.
- [5] R84 000,00.

Questions 15, 16 and 17 relate to the following situation:

The following table is an extract from the amortisation schedule for Denver's home loan over a 20-year period:

Month	Outstanding	Interest	Payment	Principal	Outstanding
	principal at	due at		repaid	principal at
	beginning of	month			month
	the month	end			end
201	503 033,57	6 036,40	15 908,46	9 872,06	493 161,51
202		5 917,94	15 908,46		A

Question 15

The applicable nominal interest rate, compounded monthly, equals

- [1] 14,4%.
- [2] 14,69%.
- [3] 26,35%.
- [4] 31,6%.
- [5] 37,95%.

Question 16

The value of A equals

- [1] R477 253,05.
- [2] R483 170,99.
- [3] R487 243,59.
- [4] R493 043,03.
- [5] none of the above.

Question 17

The size of the loan equals approximately

- [1] R720 539.
- [2] R1 229 457.
- [3] R1 250 000.
- [4] R1 518 018.
- [5] R3 818 030.

Salomey took out an endowment policy The first annual payment was Rx, whereafter it increased yearly by R1700 After 20 years the policy paid out R1005962 The applicable yearly interest rate is 10% The value of x equals approximately

- [1] R564.
- [2] R6 500
- [3] R11816.
- [4] R17564.
- [5] R23 500

Question 19

The following is the price equation for Stock 733:

$$96,80770 = 7,5a_{\overline{15}1} + 32,09888$$

The yearly yield to maturity equals

- [1] 7,87%.
- [2] 15,74%.
- [3] 16,55%.
- [4] 19,39%.
- [5] 21,6%.

Question 20

If the NPV of the Calm and Relax Spa is R195000 and the profitability index is 1,24375, the initial investment in the Spa equals

- [1] R86 908.
- [2] R156 784.
- [3] R195 000.
- [4] R242 531.
- [5] none of the above

Consider Stock XX

Coupon rate: 12,6% per year
Yield to maturity: 9,5% per year
Settlement date: 9 May 2009

Maturity date. 29 September 2015

The all-in-price equals

[1] R109,89791%.

[2] R112,76174%.

[3] R113,93381%

[4] R115,97474%.

[5] R120,23381%.

Question 22

If the modified internal rate of return (MIRR), the future value of all positive cash flows C, and the present value of all negative cash flows PV_{out} , are given, then the duration of the project in years can be expressed as

[1]
$$n = \frac{\ln(\text{MIRR}+1)}{\ln(\frac{C}{\text{PV}_{\text{out}}})}$$

[2]
$$n = \frac{\ln\left(\frac{C}{\text{PV}_{\text{out}}}\right)}{\ln(\text{MIRR}+1)}$$
.

[3]
$$n = \frac{\frac{C}{\text{PV}_{\text{out}}}}{\text{MIRR}+1}$$
.

[4]
$$n = \frac{\frac{C}{PV_{out}-1}}{MIRR}$$

[5]
$$n = \frac{C}{PV_{out}} - (MIRR + 1).$$

Question 23

The coefficient of represents the part of the variation in the dependent variable that can be explained by the independent variable. The missing word is

- [1] correlation
- [2] determination.
- [3] deviation.
- [4] regression.
- [5] variance.

Questions 24 and 25 relate to the following situation:

The following table represents the number of cars sold (y) by Quick Cars and the average interest rate (x) over the corresponding time period

Average interest	Number of			
rate	cars $sold$			
\boldsymbol{x}	\boldsymbol{y}			
10	1 500			
11	1 200			
11,5	1 150			
12,0	1 000			
14,0	500			
14,5	120			
15,0	120			

Question 24

Assume that there is a linear relationship between the average interest rate and the number of cars sold over the corresponding period. The slope of the regression line equals

- [1] --0,99.
- [2] 1,78.
- [3] 1,92.
- [4] 12,57.
- [5] none of the above

Question 25

The correlation coefficient of the regression line equals

- [1] -0,99.
- [2] 1,78.
- [3] 1,92.
- [4] 12,57.
- [5] none of the above.

The equation for the present value of Stock OPE on 24/6/2009 is given by

$$P(24/6/2009) = 7,35a_{\overline{29}|0,135 \div 2} + 100\left(1 + \frac{0,135}{2}\right)^{-29}$$

and the fraction of the half year to be discounted back is 74/181 The accrued interest equals R4,30932% The clean price for Stock OPE equals

- [1] R107,56456%.
- [2] R109,02688%.
- [3] R111,87388%.
- [4] R114,90174%.
- [5] none of the above.

Question 27

The Three Wheel Fund has set aside an amount of R1 500 000 for Johny Oneleg, to be paid out to him in whatever way he pleases. He wants to receive three equal payments: one *now*, one four years from *now*, and one eight years from *now*. If an interest rate of 19% per year, compounded quarterly, is applicable, then the amount of money that Johny Oneleg will receive four years from *now*, equals approximately

- [1] R284 091.
- [2] R419 333
- [3] R500 000.
- [4] R881 097.
- [5] R1 222 990.

Question 28

Tyron bought a house for R1 450 000. He managed to secure a loan for 80% of the value of the house. His monthly payments are R15 274,76 at a fixed rate of 15% per year, compounded monthly over a period of 20 years. If an average yearly inflation rate of 12,95% is expected, then the real cost of the loan will equal approximately

- [1] R142 247
- [2] R147 753
- [3] R1 307 753.
- [4] R2 215 942.
- [5] R2 505 942

Questions 29 and 30 relate to the following situation:

Lilian will discharge a debt of $R850\,000$ eight years from now, using the sinking fund method. The debt's interest is 14,8% per year, compounded monthly. The sinking fund will earn 12,6% per year, compounded quarterly

Question 29

The quarterly deposit into the sinking fund will equal

- [1] R4 672,05.
- [2] R15 155,38.
- [3] R15 770,08.
- [4] R26 562,50.
- [5] R42 544,09.

Question 30

The total yearly cost to discharge the debt (to the nearest rand) will equal

- [1] R105 012.
- [2] R188 880.
- [3] R212 500
- [4] R231 173.
- [5] R315 040.

The number of each day of the year

FOR LEAP YEARS ADD ONE TO THE NUMBER OF EVERY DAY AFTER FEBRUARY 28

Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Day
1	1	32	60	91	121	152	182	213	244	274	305	335	1
2	2	33	61	92	122	153	183	214	245	275	306	336	2
3	3	34	62	93	123	154	184	215	246	276	307	337	3
4	4	35	63	94	124	155	185	216	247	277	308	338	4
5	5	36	64	95	125	156	186	217	248	278	309	339	5
6	6	37	65	96	126	157	187	218	249	279	310	340	6
7	7	38	66	97	127	158	188	219	250	280	311	341	7
8	8	39	67	98	128	159	189	220	251	281	312	342	8
9	9	40	68	99	129	160	190	221	252	282	313	343	9
10	10	41	69	100	130	161	191	222	253	283	314	344	10
11	11	42	70	101	131	162	192	223	254	284	315	345	11
12	12	43	71	102	132	163	193	224	255	285	316	346	12
13	13	44	72	103	133	164	194	225	256	286	317	347	13
14	14	45	73	104	134	165	195	226	257	287	318	348	14
15	15	46	74	105	135	166	196	227	258	288	319	349	15
16	16	47	75	106	136	167	197	228	259	289	320	350	16
17	17	48	76	107	137	168	198	229	260	290	321	351	17
18	18	49	77	108	138	169	199	230	261	291	322	352	18
19	19	50	78	109	139	170	200	231	262	292	323	353	19
20	20	51	79	110	140	171	201	232	263	293	324	354	20
21	21	52	80	111	141	172	202	233	264	294	325	355	21
22	22	53	81	112	142	173	203	234	265	295	326	356	22
23	23	54	82	113	143	174	204	235	266	296	327	357	23
24	24	5 5	83	114	144	175	205	236	267	297	328	358	24
25	25	56	84	115	145	176	206	237	268	298	329	359	25
26	26	57	85	116	146	177	207	238	269	299	330	360	26
27	27	58	86	117	147	178	208	239	270	300	331	361	27
28	28	59	87	118	148	179	209	240	271	301	332	362	28
29	29		88	119	149	180	210	241	272	302	333	363	29
30	30		89	120	150	181	211	242	273	303	334	364	30
31	31		90		151		212	243		304		365	31

FORMULÆ

I = Prt	$r = \frac{d}{1 - dt}$
S = P(1+rt)	$S=(1+\imath)Rs$ ការ
P = S(1 - dt)	$P=(1+\imath)Ra_{\overline{n}\imath}$
$S = P\left(1 + \frac{\jmath_m}{m}\right)^{tm}$	$P = da_{mz} + 100(1+z)^{-n}$
$J_{eff} = 100 \left(\left(1 + \frac{J_m}{m} \right)^m - 1 \right)$	$\frac{H-R}{365} \times c$
$S = Pe^{ct}$	$\frac{-R}{365} \times c$
$j_{\infty}=100(e^c-1)$	$MIRR = \left(\frac{C}{PV_{\text{out}}}\right)^{\frac{1}{n}} - 1$
$c = m \ln \left(1 + \frac{\jmath_m}{m} \right)$	$P = \frac{R}{i}$
$j_m = m\left(e^{\frac{c}{m}} - 1\right)$	$S = \left[R + \frac{Q}{i}\right] s_{\overline{m}i} - \frac{nQ}{i}$
$i = n\left(\left(1 + \frac{j_m}{m}\right)^{\frac{m}{n}} - 1\right)$	$T_r = Ra_{\overline{m}r}$
$S = R\left(\frac{(1+i)^n - 1}{i}\right)$	$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
$S=Rs_{\overline{m}_1}$	$\bar{x}_w = \frac{\sum_{i=1}^n x_i w_i}{\sum_{i=1}^n w_i}$
$P=Ra_{\overline{m}t}$	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
$P = R\left(\frac{(1+i)^n - 1}{i(1+i)^n}\right)$ $A = nR + Q\left[\frac{n(n-1)}{2}\right]$	$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$
$A = nR + Q\left[\frac{n(n-1)}{2}\right]$	

© UNISA 2009