DSC1630

Mrs Adéle Immelman
Hazelwood Campus, Room 4-28
Tel: +27 124294735
E-mail: immelmf@unisa.ac.za
Appointments and Telephone 08:00 - 13:30: Monday till Friday Telephone only 13:30-16:00: Monday till Thursday

Mrs Edinah Mudimu Hazelwood Campus, Room 4-35 Tel: +27 726800137
E-mail: mudime@unisa.ac.za

INTEREST

- Money that you earn or pay for the use of money.
- Always a percentage of the money deposited or borrowed.
-Different types of interest depends on the way interest is calculated.

Chapter
 2

-Simple Interest

- Simple Discount

SIMPLE INTEREST

- Interest calculated once
- \% of present/principal value

$$
I=\operatorname{Pr} t
$$

I = Interest received/paid - money
$\mathbf{P}=$ Principal/present value
$r=$ Interest rate per year
$t=$ Time in years - if not change it to a fraction of a year $->\div$ number of periods in one year

- Interest + principal paid in future

$$
\begin{aligned}
& S=P+I \\
& S=P+\operatorname{Pr} t \\
& S=P(1+r t)
\end{aligned}
$$

S = Accumulated (future) amount
ID: Simple interest or simple interest rate Calculator: Use normal mode

Question 1

An amount of R4 317,26 was borrowed on 5 May at a simple interest rate of 15\% per year. Determine the value of the loan, on 16 August of the same year.

$$
\stackrel{\Delta}{\Delta \Delta \Delta}
$$

ID: simple interest rate
 $$
S=P(1+r t)
$$

Given:

$$
\begin{aligned}
P & =4317,26 \\
r & =15 \% \\
t & =5 \text { May till 16 Aug } \\
& \text { count days or use } \\
& \text { table value in guide } \\
& \text { appendix } C \\
\text { row } \Rightarrow & \text { day } \\
\text { column } \Rightarrow & \text { month } \\
\text { intersection } \Rightarrow & \text { date value } \\
& =228-125 \\
= & \frac{103}{365}
\end{aligned}
$$

$S=P(1+r t)$

$=4317,26\left(1+0,15 \times \frac{103}{365}\right)$

$=\boldsymbol{R 4 5 0 0}$

Calculator: Use normal mode

Question 2

Determine the amount of money received as interest in the previous question．案絮察
$I=\operatorname{Pr} t$
$=4317,26 \times 0,15 \times \frac{103}{365}$
$=182,74$
An amount of R182，74 was received．

Calculator：Use normal mode

Question 3

Fifteen months from now Jenny has to pay Jonas R10 000. She decides to pay him back earlier. A simple interest rate of 13% per year is applicable. Determine the amount that Jenny will have to pay Jonas seven months from now.

R10 000
\downarrow
nOw
7 mths
15 mths
?X
P

$$
\begin{aligned}
& S=P(1+r t) \\
& 10000=P\left(1+0,13 \times \frac{8}{12}\right) \\
& \frac{10000}{\left(1+0,13 \times \frac{8}{12}\right)}=P \\
& P=9202,45 \\
& \text { Jenny must pay Jonas } R 9202,45 .
\end{aligned}
$$

Calculator: Use normal mode

SIMPLE DISCOUNT

- Interest is calculated on S (FV)
- \% of FV
- Interest deducted from S

$$
P=S-D
$$

$$
P=S-S d t
$$

$$
P=S(1-d t)
$$

$P=$ Present value
$S=$ Future value
$d=$ discount rate $t=$ time in years

ID: Simple discount/rate
Calculator: use normal mode

Question 4
A bank's discount rate is 12\%. You must pay the bank R5 000 in six months' time. Determine the amount of money that you will receive now.
等

ID: discount rate

$$
\begin{aligned}
& P=S(1-d t) \\
& S=5000 \\
& d=0,12
\end{aligned}
$$

$$
t=\frac{6}{12}
$$

$$
P=5000\left(1-0,12 \times \frac{6}{12}\right)
$$

$$
=4700
$$

You will receive R4 700.

Question 5
An amount of money is invested for 281 days at a simple discount rate of $10,9 \%$ ． Determine the equivalent simple interest rate．
然然然然

ID：
simple $i+$ discount rate d＝＞conversion

$$
\begin{aligned}
& P=S(1-d t) \text { and } \\
& S=P(1-r t) \text { The two equations }
\end{aligned}
$$ is equal if

$$
r=\frac{d}{1-d t} \quad p 151 \text { guide }
$$

0，109
$=\frac{0,109}{1-0,109 \times 281 \div 365}$
$=0,119$
The equivalent simple interest rate is $\mathbf{1 1 , 9 \%}$ ．

Chapter 3

- Compound interest
- Odd periods and fractional compounding
- Effective rate
- Continuous compounding
-Conversions
- Time value of money
- Equation of value

COMPOUND INTEREST

- Only one principle value
- Interest calculations are done more than once according to the number of compounding periods
- Earn interest on interest
$S=P\left(1+\frac{j_{m}}{m}\right)^{t m}$ or $S=P(1+i)^{n}$
$\boldsymbol{j}_{\mathrm{m}}$ - nominal interest rate per year m - \# compound periods in 1 year t - years or fraction of year!!!
tm - also known as \mathbf{N} on your calculator

ID: compound interest + one principle Calculator: finance mode or normal

Question 6
Susan deposits R15 000 into a new savings account. The amount of money that she will have in the bank after three years, if interest is compounded monthly at $\mathbf{8 \%}$ per year, equals?

ID: compounded interest/one principle

$$
S=P\left(1+\frac{j_{m}}{m}\right)^{t m}
$$

with $P=15000 ; j_{m}=0,08$

$$
m=12 ; t=3
$$

$$
\begin{aligned}
S & =15000\left(1+\frac{0,08}{12}\right)^{3 \times 12} \\
& =R 19053,56
\end{aligned}
$$

SHARP:

2ndf CA

2ndf P/Y 12 ENT ON/CL
$3 \times 12=\mathrm{N}$ or $32 \mathrm{ndf} \times \mathbf{P} / \mathbf{Y}$
N
$\pm 15000 \quad$ PV
8 I/Y
Comp FV

HP:
ORANGE C ALL
12 ORANGE P/YR
$3 \times 12=\mathrm{N}$ or 3 ORANGE \times P/YR
N $15000 \pm \quad \mathrm{PV}$
8 I/YR
FV

Question 7

Jack invested R17 000 into an account earning 13,89\% interest per year, compounded weekly. Determine the accumulated amount after five years.

浣

ID: compounded interest/one principle

$$
S=P\left(1+\frac{j_{m}}{m}\right)^{t m}
$$

with $P=17000$
$\boldsymbol{j}_{\boldsymbol{m}}=\mathbf{0 , 1 3 8 9}$
$m=52$
$t=5$
$S=17000\left(1+\frac{0,1389}{52}\right)^{5 \times 52}$ $=34014,52$

The accumulated amount is
R34 014,52.

Question 8
Harry's parents think that they will need
R170 000 to pay for his university fees in 15 years' time. They invest money at $7,71 \%$ per year, compounded quarterly. Determine the amount that they need to invest now.

ID: compounded interest/one principle

$$
S=P\left(1+\frac{j_{m}}{m}\right)^{t m}
$$

Given:
FV = 170 000; $\mathrm{t}=15 ; \mathrm{j}_{\mathrm{m}}=7,71 ; \mathrm{m}=4$
$\mathbf{P V}=$?

$$
170000=P\left(1+\frac{0,0771}{4}\right)^{15 \times 4}
$$

Do not change the formula - your calculator fin mode can solve it as it is!!!!!!! Enter the known values then COMP unknown

SHARP:
P/Y: 4
N: 15×4
FV: ± 170000
I/Y: 7.71
Comp PV

HP:
P/YR: 4
N: 15×4
FV: ± 170000
I/YR: 7.71
PV

R54 071,27 must be invested.

Odd periods and fractional

 compoundingOdd period: Time period is not a full compounding period but smaller

Different methods to deal with it:
1.use simple interest for odd periods and compound interest for full periods -Important !!!! Time line 2. fractional compounding Use compounding formula but the time period is calculated as the full period plus the odd period expressed as a fraction of the compounding period. - Page 37 guide

ID: odd periods or method given

Question 9

On 5 April Sam invested R75 000 in an account paying $8,37 \%$ interest per year, compounded monthly. Interest is credited on the first day of every month. Sam wants to move into his new shop on 21 November of the same year. Determine the amount of money that Sam will have available on 21 November of the same year if simple interest is used for odd period calculations and compound interest for the full period.

ID: odd periods or method given Draw time line first:

R75 000

26 days
6 months
20 days

Odd: $S=P(1+r t)$
Full: $S=P\left(1+\frac{j_{m}}{m}\right)^{t m}$

Method 1: Calc each period separately Don't round off until end

$$
S(F V 1)=P(1+r t)
$$

$$
=75000\left(1+0,0837 \times \frac{26}{365}\right)
$$

$$
=75447,16438
$$

$$
\begin{aligned}
S(F V 2) & =75447,16438\left(1+\frac{0,0837}{12}\right)^{\left(\frac{6}{12} \times \frac{12}{1}\right)} \\
& =78660,20122
\end{aligned}
$$

$S(F V 3)=78660,20122\left(1+0,0837 \times \frac{20}{365}\right)$
$=79020,96$

Method2: Enter whole calculation once

$$
\begin{aligned}
S= & P(1+r t)\left(1+\frac{j_{m}}{m}\right)^{t m}(1+r t) \\
= & 75000\left(1+0,0837 \times \frac{26}{365}\right) \times \\
& \left(1+\frac{0,0837}{12}\right)^{\left(\frac{6}{12} \frac{12}{1}\right)}\left(1+0,0837 \times \frac{20}{365}\right) \\
= & 79020,96
\end{aligned}
$$

Sam will have R79 020,96 available.

Question 10

Determine the amount that Sam in Question 5 has available if fractional compounding is used for the full term．

然然然

ID: Fractional compounding

Use compounding formula but the time period is calculated as the full period plus the odd period expressed as a fraction of the compounding period.
$S=P\left(1+\frac{j_{m}}{m}\right)^{t m}$
$=75000\left(1+\frac{0,0837}{12}\right)^{\left(\frac{26+20}{365}+\frac{6}{12}\right) \times \frac{12}{1}}$ $=79020,29$

Sam will have R79 020,29 available.

EFFECTIVE RATE

- Effective interest rate is the rate that you in effect will receive in one year.
- You actually earn more as the specified compound interest rate because of the compounding effect.

For example:
If you invest R100 for 3 months at 12\% per year, compounded monthly:

$$
\begin{aligned}
S & =P\left(1+\frac{\boldsymbol{j}_{m}}{m}\right)^{t m} \\
& =100\left(1+\frac{, 12}{12}\right)^{\frac{3}{12} \frac{12}{1}} \\
& =103,03
\end{aligned}
$$

Thus the interest earned is
R100 - R103,03 = R3,03
Now if you calculate the interest rate earning of R3,03 it is

$$
\begin{aligned}
I & =\operatorname{Pr} t \\
3,03 & =100 \times r \times \frac{3}{12} \\
r & =12,12 \%
\end{aligned}
$$

Thus although the rate is 12% you earn 12,12\% effectively.

Formula:

$J_{e f f}=100\left(\left(1+\frac{j_{m}}{m}\right)^{m}-1\right)$
ID: effective interest rate

Question 11

Determine the effective rate for a nominal rate of $18,75 \%$ per year, compounded every three months.

ID: effective interest rate

$$
\begin{aligned}
J_{\text {eff }} & =100\left(\left(1+\frac{j_{m}}{m}\right)^{m}-1\right) \\
& =100\left(\left(1+\frac{0,1875}{4}\right)^{4}-1\right) \\
& =20,11 \%
\end{aligned}
$$

The effective rate is $\mathbf{2 0 , 1 1 \%}$.

CONTINUOUS COMPOUNDING

Compounding periods almost an infinite number of times

$S=P e^{c t}$

c, t - yearly if not change!
ID: continuous compounding or continuous rate

Note: The mathematical constant \boldsymbol{e} is a unique real number. The number e is of considerable importance in mathematics. The numerical value of e truncated to 20 decimal places is 2,71828182845904523536. Some calculators have a specific key (for example e^{x}) to calculate the value of the power of e. You should be able to call up the specified value of e by entering e^{1} into your calculator.

Question 12

R2 800 accumulates to R3 798 in 42 months, determine the continuous compounding rate.

ID: continuous compounding

$$
\begin{aligned}
S & =P e^{c t} \\
\mathbf{3 7 9 8} & =\mathbf{2 8 0 0} e^{e x^{42}} 12
\end{aligned}
$$

We need to solve c. Need to have it on its own on one side.

$$
\frac{3798}{2800}=e^{e x \frac{42}{12}}
$$

But c in the power - use ln rule to bring it "down" we take ln on both sides of the equation:

$$
\ln \left(\frac{3798}{2800}\right)=\ln e^{c \times \frac{42}{12}}
$$

Now $\ln a^{x}=x \ln a$ is $a \ln$ rule. Thus

$$
\ln \left(\frac{3798}{2800}\right)=\left(c \times \frac{42}{12}\right) \ln e
$$

But $\ln e=1$

$$
\begin{aligned}
\ln \left(\frac{3798}{2800}\right) \div \frac{42}{12} & =c \\
c & =8,7 \%
\end{aligned}
$$

Conversions:

-Between nominal rate and continuous compounding rate c :

$$
c=\boldsymbol{m} \ln \left(1+\frac{\boldsymbol{j}_{\boldsymbol{m}}}{\boldsymbol{m}}\right)
$$

Question 13
Determine the continuous compounding rate for a $\mathbf{1 2 \%}$ nominal rate per year, compounded every three months.

$$
\begin{aligned}
c & =m \ln \left(1+\frac{j_{m}}{m}\right) \\
& =4 \ln \left(1+\frac{0,12}{4}\right) \\
& =11,824 \%
\end{aligned}
$$

- Continuous compounding and effective rate

$$
J_{\infty}=100\left(e^{c}-1\right)
$$

Question 14
Determine the effective rate for a 9\% continuous compounding rate.

$$
\begin{aligned}
& \\
J_{\infty} & =100\left(e^{c}-1\right) \\
& =100\left(e^{0,09}-1\right) \\
& =9,42 \%
\end{aligned}
$$

- Ordinary compounding but compounding periods differ

Convert a given compounding period to another compounding period and still get the same return.

$$
i=n\left(\left(1+\frac{j_{m}}{m}\right)^{m \div n}-1\right)
$$

Tip: Remember n stands for new compounding periods and m the old compounding periods

Question 15

An interest rate of $\mathbf{1 5 , 2 5 \%}$ per year compounded half-yearly is equivalent to a quarterly compounded interest rate of?
$i=n\left(\left(1+\frac{j_{m}}{m}\right)^{m \div n}-1\right)$

$$
=14,97 \%
$$

TIME VALUE OF MONEY

- The same amount of money has a different value at different time periods because of interest.
- Moving money forward in time or calculating a $F V$ value $=>$ we \times by interest component. Money becomes more.

$$
S=P\left(1+\frac{j_{m}}{m}\right)^{t m}
$$

- Moving money back in time or calculating a $P V$ value $=>$ we \div interest component or \times by interest component to the power of $\mathbf{- 1}$.

$$
P=\frac{S}{\left(1+\frac{j_{m}}{m}\right)^{t m}} \text { or } P=S\left(1+\frac{j_{m}}{m}\right)^{-t m}
$$

Question 16

R35 000 must be paid back in
three years time from now. Interest is calculated at $\mathbf{8 , 4 \%}$ per year, compounded half yearly. Calculate the amount that must be paid if the debt is paid (a) six months from now. (b) five years from now.
院

$$
\begin{aligned}
S & =P\left(1+\frac{j_{m}}{m}\right)^{t m} \\
S & =35000 \\
j_{m} & =0,084 \\
m & =2 \\
t & =2,5 \\
P & =S\left(1+\frac{j_{m}}{m}\right)^{-t m} \\
& =35000\left(1+\frac{0,084}{2}\right)^{-2,5 \times 2} \\
& =28492,43
\end{aligned}
$$

The amount that must be paid back six months from now is R28 492,43.

The amount that must be paid back five years from now is R41 260,92.

EQUATION OF VALUE

Sometimes we want to reschedule the payments of our debts.

To calculate the new payments the Sum of obligations $=$ Sum of payments.

We can only compare money that is at the same time period because of the time value of money $=>$ move all the moneys to the same date before we can add or subtract.

Moving money forward \times by interest component - calculating a FV value

Moving money back \div interest component or \times by interest component to the power of -1 calculating a $P V$ value

Use a time line
ID: compound interest and more than one payment or debts but not equal size and not equal time periods

Question 17

Three years ago Sipho borrowed R10 000 from Judith that is due two years from now. He must also pay her R5 000 four years from now. Sipho decides to settle his obligations with one payment two years from now. Determine the amount that Sipho will pay Judith two years from now if an interest rate of $9,5 \%$ per year, compounded quarterly is applicable.
家

ID: rescheduling + comp i

What we owe we must pay back.
Thus
Sum of obligations = Sum of payments.
But we can only add moneys if they at the same time period because of time value of money. Thus we move all the money to year2.

Obligation 1: R10 000

R10 $000 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \downarrow$

We must move the R10 000 forward to year two - (five years)

$$
\begin{aligned}
S & =P(1+i)^{n} \\
& =10000\left(1+\frac{0,095}{4}\right)^{5 \times 4} \\
& =15991,10
\end{aligned}
$$

Obligation 2: R5 000

We must move the R5 000 that is due four years from now, back to year two.

$$
\begin{aligned}
S & =P(1+i)^{n} \\
P & =S(1+i)^{-n} \\
& =5000\left(1+\frac{0,095}{4}\right)^{-2 \times 4} \\
& =4143,99
\end{aligned}
$$

Now the payment is say X ．Thus

Sum of obligations＝Sum of payments

15 991，10＋ 4 143，99＝X

Sipho will pay Judith R20 135，09．

Question 18

If $\boldsymbol{S}=\boldsymbol{P}\left(\mathbf{1}+\frac{\boldsymbol{j}_{\boldsymbol{m}}}{\boldsymbol{m}}\right)^{t m}$ write $\boldsymbol{j}_{\boldsymbol{m}}$ in terms of P, S, t and m ．
然然㳽

ID: Maths question

$$
\begin{aligned}
S & =P\left(1+\frac{j_{m}}{m}\right)^{t m} \\
\left(\frac{S}{P}\right) & =\left(1+\frac{j_{m}}{m}\right)^{t m} \\
\left(\frac{S}{P}\right)^{\frac{1}{t m}} & =\left(1+\frac{j_{m}}{m}\right)^{\frac{1}{m}} \\
\frac{j_{m}}{m} & =\left(\frac{S}{P}\right)^{\frac{1}{t m}}-1 \\
j_{m} & =m\left(\left(\frac{S}{P}\right)^{\frac{1}{t m}}-1\right)
\end{aligned}
$$

Chapter 4

- Annuities
- Ordinary Annuities
- Annuities due

ANNUITIES

- More than one principal called payments/deposits/withdrawals
- Principals are of equal size and made in equal time intervals.
- Payments can be made in the beginning of the time interval or at the end or can be deferred for a period.
- Payment period = comp interest periods If not we convert the interest period

ID:

1. Equal size payments/deposit/withdrawal made in equal time intervals plus
2. Compound interest.
3. Comp i periods = payment periods

1. Ordinary annuity

Payments made at end of time period or are not specified

ID: Equal payments in equal time intervals plus compound interest plus payments made at end of each time period.

- Present value:

$$
\begin{aligned}
& P=R a_{n_{i}} \\
&=R\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] \\
& \text { with } i=\frac{j_{m}}{m} \text { and } n=t m
\end{aligned}
$$

Remember $\boldsymbol{a}_{\boldsymbol{n}_{i}}$ is just a place holder for a formula!!!!!!!!
Calculator use fin mode. Ordinary mode takes long

Question 19
Determine the present value of equal payments of R1 500 per month for nine years at 7,5\% per year compounded monthly.
管

ID:

- Equal payments in equal time intervals + comp i
- Nothing said =Payment end of period
- Comp i periods = payment periods =>Ordinary annuity

$$
P=R a_{n i \boldsymbol{i}}
$$

with $R=1500$

$$
\begin{aligned}
n & =9 \times 12 \\
i & =0,075 \div 12 \\
P & =1500 a_{\overline{9 \times 120,075 \div 12}}
\end{aligned}
$$

SHARP:

$$
\begin{array}{llllll}
\text { 2ndf } & \text { CA } & & & & \\
\text { 2ndf } & \text { P/Y } & 12 & \text { ENT } & \text { ON/CL } & \\
9 \times 12 \quad= & \text { N } & \text { or } 9 & 2 \text { ndf } \times \text { P/Y } & \text { N } & \text { N } \\
\pm & 1500 & \text { PMT } & & & \\
7.5 & \text { I/Y } & & & & \\
\text { Comp } & \text { PV } & & & &
\end{array}
$$

HP:
ORANGE C ALL
12 ORANGE P/YR
$9 \times 12=\mathrm{N}$ or 9 ORANGE \times P/YR
$1500 \pm$ PMT
7.5 I/YR

PV
The present value is R117 545,50.

- Future value

$$
\begin{aligned}
& S=R s_{\vec{n}_{i}} \\
& \qquad=R\left[\frac{(1+i)^{n}-1}{i}\right] \\
& \text { with } i=\frac{j_{m}}{m} \text { and } n=t m
\end{aligned}
$$

Remember $\boldsymbol{S}_{{ }_{\boldsymbol{n}}{ }_{i}}$ is just a place holder for a formula!!!!!!!!

Question 20

Determine the accumulated amount of equal monthly payments of R1 500 for nine years at an interest rate of $7,5 \%$ per year, compounded monthly.

ID:

- Equal payments in equal time intervals + comp i
- Nothing said =Payment end of period
- Comp i periods = payment periods =>Ordinary annuity

$$
S=R s_{\bar{n}_{i}}
$$

with $R=1500 ; \quad i=0,075 \div 12 ; n=9 \times 12$

$$
\begin{aligned}
S & =1500 s_{9 \times 120,075=12} \\
& =230378,79
\end{aligned}
$$

The future value is R230 378,79.

Question 21 and 22
During a three-year period when her business was prospering, Patricia was able to deposit R3 000 at the end of every month into an account earning 12% interest per year, compounded monthly. At the end of the three year period Patricia decided to stop her payments into this account as the interest was lowered to 8% per year compounded quarterly. She left the money in the account for ten years. She then decided to exhaust this account by withdrawing equal amounts every six months for five years. The interest rate was still 8\% per year but was now compounded semi-annually.

Question 21
Determine the total amount of savings after the ten-year period.

First draw a time line:

The question can be divided into 3 parts
Part 1:
ID:

- Equal payments in equal time intervals + comp i
- Nothing said =Payment end of period
- Comp i periods = payment periods =>Ordinary annuity

$$
\begin{aligned}
S & =R s_{\bar{n} i} \\
& =3000 s_{\overline{3 \times 12} 0,12 \div 12} \\
& =129230,64
\end{aligned}
$$

Part 2:
This amount was left in the account for 10 years without adding any money. It however received compound interest of 8% per year, compounded quarterly.

$$
\begin{aligned}
S & =P\left(1+\frac{j_{m}}{m}\right)^{t m} \\
& =129230,64\left(1+\frac{0,08}{4}\right)^{10 \times 4} \\
& =285346,37
\end{aligned}
$$

The balance in the account is $\mathbf{R 2 8 5} 346,37$ after 13 years.

Question 22
Determine the amount that Patricia can withdraw every six months．
等等然然

Part 3：
This R285 346，37 will be exhausted over a five year period in equal payments．

Do I use ani or sni？
Is R285 346，37 a PV or FV？
PV for the withdrawal－use ani formula

$$
P=R a_{\vec{n} i}
$$

285 346， $37=R \boldsymbol{a}_{\overline{5 \times 2} \mid 0,08 \div 2}$
NB^{10000} : You do not have to change the formula if you need to calculate any other value except P and S. If you use the financial mode of your calculator you just enter the values of the formula that are known and then just compute the value you do not have

Using your SHARP calculator's financial mode:
$\mathbf{P} / \mathbf{Y}=\mathbf{2 ;} \mathbf{I} / \mathbf{Y}=\mathbf{8 ;} \mathbf{N = 5 x 2 ;} \mathbf{P V}= \pm 285$ 346,37 Comp PMT

$$
R=35180,62
$$

Or HP:
P/YR=2; I/YR=8; N= 5x2; PV= ± 285 346,37 PMT

Patricia will be able to withdraw R35 180,62 every six months for five years.

Question 23

Determine the accumulated value (approximated) of R500 payments made at the end of each month for a period of eight years. Interest is compounded semiannually at $13,5 \%$ per year.

ID:

- Equal payments in equal time intervals + comp i
- Payment end of period
=>Ordinary annuity
- But the interest rate is semi-annually and payments periods monthly!

We must first convert the interest rate from semi-annually to monthly.

$$
\begin{aligned}
& i=n\left(\left(1+\frac{j_{m}}{m}\right)^{m \div n}-1\right) \\
& =12\left(\left(1+\frac{0,135}{2}\right)^{2+12}-1\right) \\
& =0,13135 . \ldots .
\end{aligned}
$$

This is the new interest rate that the R500 payments will receive.

$$
\begin{aligned}
S & =R s_{\bar{n} i} \\
& =500 s_{\overline{8 \times 12} 0,13135 \ldots . \ldots+12} \\
& =84218,28
\end{aligned}
$$

The accumulated amount is approximately R84 000.

2. Annuity due

- Payments made at beginning of period
- When the words "begin, start immediately or in advance" are used together with the payments in the sentence.
- Multiply the formulae with (1 + i)

$$
\begin{aligned}
& S=(1+i) R S_{\eta_{i}} \\
& P=(1+i) R a_{\eta_{i}}
\end{aligned}
$$

ID: Equal payments in equal time intervals plus compound interest plus payments made at beginning of each time period. Comp i periods must be equal to payment periods.

Question 24
Determine the present value of four equal payments of R2 $\mathbf{0 0 0}$ per year at $\mathbf{8 \%}$ per year where the payments are made at the beginning of each year.

ID:

- Equal payments in equal time intervals + comp i
- Payment beginning of period
- interest rate period = payment period=> annuity due

R2 000	R2000	R2 000	R2 000
\downarrow	\downarrow	\downarrow	\downarrow
$\mathbf{0}$	1	2	3

$$
\begin{aligned}
P= & (1+i) 2000 a_{40,08} \\
= & 7154,19
\end{aligned}
$$

Calculator use fin mode and Begin mode key By using the Begin mode key the calculator know it is an annuity due calculation.

The present value is $\mathrm{R} 7 \mathbf{1 5 4 , 1 9}$.

Remember to switch off the BEGIN key!

Thank you!

