
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10.1 MONOPOLY						
Average Revenue and Marginal Revenue						
	- marginal revenue Change in revenue resulting from a one-unit increase in output.					
	To see the relationship among total, average, and marginal revenue, consider a firm facing the following demand curve:					
응	TABLE 10.1 Total, Marginal, and Average Revenue					
\sum_{i}°	Price (P)	Quantity (Q)	Total Revenue (R)	Marginal Revenue (MR)	Average Revenue (AR)	
$\left.\right\|_{0} ^{3}$	\$6	0	\$0	---	---	
$\underset{\stackrel{\rightharpoonup}{\ddot{a}}}{ }$	5	1	5	\$5	\$5	
$\sum_{\sum}^{\text {L }}$	4	2	8	3	4	
$\text { \| } \ddot{\square}$	3	3	9	1	3	
浐	2	4	8	-1	2	
$\frac{2}{5}$	1	5	5	-3	1	

Average Revenue and Marginal Revenue
Average and marginal
Average and marginal
the demand curve
$P=6-Q$.

Copyriaht© 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics . Pindyck/Rubinfeld, 7e. 5 of 50
\qquad
\qquad
\qquad

10.1
 MONOPOLY

The Monopolist's Output Decision

We can also see algebraically that Q^{*} maximizes profit. Profit π is the difference between revenue and cost, both of which depend on Q :

$$
\pi(Q)=R(Q)-C(Q)
$$

As Q is increased from zero, profit will increase until it reaches a maximum and then begin to decrease. Thus the profit-maximizing Q is such that the incremental profit resulting from a small increase in Q is just zero (i.e., $\Delta \pi / \Delta Q=0$). Then

$$
\Delta \pi / \Delta Q=\Delta R / \Delta Q-\Delta C / \Delta Q=0
$$

But $\Delta R / \Delta Q$ is marginal revenue and $\Delta C / \Delta Q$ is marginal cost. Thus the profit-maximizing condition is that

$$
\mathrm{MR}-\mathrm{MC}=0 \text {, or } \mathrm{MR}=\mathrm{MC}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10.1 MONOPOLY

\qquad
An Example

Figure 10.3

Example of Profit Maximization
Part (a) shows total revenue R, total cost C, and profit, the difference between the two. Part (b) shows average and marginal revenue and average and marginal cost. Marginal revenue is the slope of the total revenue curve, and marginal cost is the slope of the total cost curve.
The profit-maximizing output is $Q^{*}=10$, the point where marginal revenue equals marginal cost.
At this output level, the slope of the profit curve is zero, and the slopes of the total total cost curves are equal. The profit per unit is $\$ 15$, the difference
between average revenue and average cost. Because 10 units are produced, tota profit is $\$ 150$.

10.1 MONOPOLY

A Rule of Thumb for Pricing
We want to translate the condition that marginal revenue should equal marginal cost into a rule of thumb that can be more easily applied in practice
To do this, we first write the expression for marginal revenue:
$\mathrm{MR}=\frac{\Delta R}{\Delta Q}=\frac{\Delta(P Q)}{\Delta Q}$

10.1 MONOPOLY

Note that the extra revenue from an incremental unit of quantity, \qquad $\Delta(P Q) / \Delta Q$, has two components:

1. Producing one extra unit and selling it at price P brings in revenue (1) $(P)=P$.
2. But because the firm faces a downward-sloping demand
curve, producing and selling this extra unit also results in a small
drop in price $\Delta P / \Delta Q$, which reduces the revenue from all units
sold (i.e., a change in revenue $Q[\Delta P / \Delta Q]$).
Thus,

$$
\mathrm{MR}=P+Q \frac{\Delta P}{\Delta Q}=P+P\left(\frac{Q}{P}\right)\left(\frac{\Delta P}{\Delta Q}\right)
$$

10.1 MONOPOLY

A Rule of Thumb for Pricing
$(Q / P)(\Delta P / \Delta Q)$ is the reciprocal of the elasticity of demand, $1 / E_{\mathrm{d}}$, measured at the profit-maximizing output, and

$$
\mathrm{MR}=P+P\left(1 / E_{d}\right)
$$

Now, because the firm's objective is to maximize profit, we can set marginal revenue equal to marginal cost

$$
P+P\left(1 / E_{d}\right)=\mathrm{MC}
$$

which can be rearranged to give us

$$
\frac{P-M C}{P}=-\frac{1}{E_{d}}
$$

Equivalently, we can rearrange this equation to express price directly as a markup over marginal cost:
$P=\frac{\mathrm{MC}}{1+\left(1 / E_{d}\right)}$

10.1 MONOPOLY
 example 10.1 Astra-Merck Prices Prilosec
 In 1995, Prilosec, represented a new generation of antiulcer medication. Prilosec was based on a very different biochemical mechanism and was much more effective than earlier drugs.

By 1996, it had become the best-selling drug in the world and faced no major competitor.
Astra-Merck was pricing Prilosec at about $\$ 3.50$ per daily dose
The marginal cost of producing and packaging Prilosec is only about 30 to 40 cents per daily dose
The price elasticity of demand, E_{D}, should be in the range of roughly -1.0 to -1.2 .
Setting the price at a markup exceeding 400 percent over marginal cost is consistent with our rule of thumb for pricing.

10.1 MONOPOLY

The Effect of a Tax
Suppose a specific tax of t dollars per unit is levied, so that the
monopolist must remit t dollars to the government for every unit it sells. If MC was the firm's original marginal cost, its optimal production decision is now given by
Figure 10.5
Effect of Exise Tax on Monopolist
With a tax t per unit, the firm's
effective marginal cost is
increased by the amount t to
$\mathrm{MC}+t$.
In this example, the increase in
price $\triangle P$ is larger than the tax t.

10.1 MONOPOLY

*The Multiplant Firm
\qquad

Suppose a firm has two plants. What should its total output be, and how much of that output should each plant produce? We can find the answer intuitively in two steps

- Step 1. Whatever the total output, it should be divided between the two plants so that marginal cost is the same in each plant. Otherwise, the firm could reduce its costs and increase its profit by reallocating production.
- Step 2. We know that total output must be such that marginal revenue equals marginal cost. Otherwise, the firm could increase its profit by raising or lowering total output.
\qquad
\qquad
\qquad
\qquad
\qquad
*The Multiplant Firm
We can also derive this result algebraically. Let Q_{1} and C_{1} be the
output and cost of production for Plant $1, Q_{2}$ and C_{2} be the output and cost of production for Plant 2, and $Q_{T}=Q_{1}+Q_{2}$ be total output. Then
profit is

$$
\pi=P Q_{T}-C_{1}\left(Q_{1}\right)-C_{2}\left(Q_{2}\right)
$$

\qquad

The firm should increase output from each plant until the incremental profit from the last unit produced is zero. Start by setting incremental profit from output at Plant 1 to zero:

$$
\frac{\Delta \pi}{\Delta Q_{1}}=\frac{\Delta\left(P Q_{7}\right)}{\Delta Q_{1}}-\frac{\Delta C_{1}}{\Delta Q_{1}}=0
$$

Here $\Delta\left(P Q_{T}\right) / \Delta Q_{1}$ is the revenue from producing and selling one more unit-i.e., marginal revenue, MR, for all of the firm's output.
10.1 MONOPOLY
*The Multiplant Firm
The next term, $\Delta C_{1} / \Delta Q_{1}$, is marginal cost at Plant $1, M C_{1}$. We thus have MR - MC ${ }_{1}=0$, or

$$
\mathrm{MR}=\mathrm{MC}_{1}
$$

Similarly, we can set incremental profit from output at Plant 2 to zero,

$$
\mathrm{MR}=\mathrm{MC}_{2}
$$

Putting these relations together, we see that the firm should produce so that
$\mathrm{MR}=\mathrm{MC}_{1}=\mathrm{MC}_{2}$
(10.3)
\qquad
\qquad
\qquad
\qquad -
(10.3)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\mathrm{MR}=\mathrm{MC}_{1}=\mathrm{MC}_{2}
$$

$\ddot{ }$	

The Demand for Toothbrushe
The Demand for Toothbrushe
Part (a) shows the marke
Part (a) shows the marke
Part (b) shoow, the d
Part (b) shoow, the d
Part (b) shows the demand
Part (b) shows the demand
Firm A.
Firm A.
At a market price of \$1.ma,
At a market price of \$1.ma,
is -1.5.
is -1.5.
Firm A, however, sees a
Firm A, however, sees a
much more elastic demand
much more elastic demand
curve DA because of
curve DA because of
competition from other firms
competition from other firms
At a price of \$1.50, Firm A's
At a price of \$1.50, Firm A's
Still, Firm A has some
monopoly power: Its profit
monopoly power: Its profit
maximizing price is \$1.50
maximizing price is \$1.50
which
which
\qquad
10.2 MONOPOLY POWER

Measuring Monopoly Power

```
Remember the important distinction between a perfectly competitive
    firm and a firm with monopoly power: For the competitive firm, price
    equals marginal cost; for the firm with monopoly power, price exceeds
    marginal cost.
    Lerner Index of Monopoly Powe
    Measure of monopoly power calculated as
    excess of price over marginal cost as a
    fraction of price.
Mathematically:
\[
L=(P-\mathrm{MC}) / P
\]
This index of monopoly power can also be expressed in terms of the elasticity of demand facing the firm.
\[
\begin{equation*}
L=(P-\mathrm{MC}) / P=-1 / E_{d} \tag{10.4}
\end{equation*}
\] marginal cost.
Lerner Index of Monopoly Powe
excess of price over marginal cost as a
fraction of price.
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10.2 MONOPOLY POWER

EXAMPLE 10.2 Markup Pricing: Supermarkets
to Designer Jeans
Although the elasticity of market demand for food
is small (about -1), no single supermarket can
raise its prices very much without losing The manager of a typical supermarket should set prices about 11 percent above marginal cost.
Small convenience stores typically charge higher prices because its customers are generally less price sensitive.
Because the elasticity of demand for a convenience store is about -5 , the markup equation implies that its prices should be about 25 percent above marginal cost.
With designer jeans, demand elasticities in the range of -2 to -3 are typical.
This means that price should be 50 to 100 percent higher than marginal cost.
Fyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld. 7e. $\quad 22$ of 50

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

10.3 SOURCES OF MONOPOLY POWER

Three factors determine a firm's elasticity of demand. \qquad

1. The elasticity of market demand. Because the firm's own demand will be at least as elastic as market demand, the elasticity of market demand limits the potential for monopoly power.
2. The number of firms in the market. If there are many firms, it is unlikely that any one firm will be able to affect price significantly.
3. The interaction among firms. Even if only two or three firms are in the market, each firm will be unable to profitably raise price very much if the rivalry among them is aggressive, with each firm trying to capture as much of the market as it can.
10.3 SOURCES OF MONOPOLY POWER

The Elasticity of Market Demand
If there is only one firm-a pure monopolist-its demand curve is the market demand curve.

Because the demand for oil is fairly inelastic (at least in the short run), OPEC could raise oil prices far above marginal production cost during the 1970s and early 1980s.
Because the demands for such commodities as coffee, cocoa, tin, and copper are much more elastic, attempts by producers to cartelize these markets and raise prices have largely failed
In each case, the elasticity of market demand limits the potential monopoly power of individual producers. \qquad
\qquad
\qquad
10.3 SOURCES OF MONOPOLY POWER

The Number of Firms
When only a few firms account for most of the sales in a market, we say that the market is highly concentrated.

- barrier to entry Condition that impedes entry by new competitors.

The Interaction Among Firms

Firms might compete aggressively, undercutting one another's prices o capture more market share

This could drive prices down to nearly competitive levels.
Firms might even collude (in violation of the antitrust laws), agreeing to limit output and raise prices
Because raising prices in concert rather than individually is more likely to be profitable, collusion can generate substantial monopoly power.

THE SOCIAL COSTS OF MONOPOLY POWER
10.4

Rent Seeking

- rent seeking Spending money in
socially unproductive efforts to acquire,
maintain, or exercise monopoly.
In 1996, the Archer Daniels Midland Company (ADM) successfully lobbied the Clinton administration for regulations requiring that the ethanol (ethyl alcohol) used in motor vehicle fuel be produced from corn.
Why? Because ADM had a near monopoly on corn-based ethanol production, so the regulation would increase its gains from monopoly power
10.4 THE SOCIAL COSTS OF MONOPOLY POWER

Price Regulation

Figure 10.11

 produces Q_{m} and charges P When the government imposes a price ceiling of P the firm's average and marginal revenue are constan and equal to P_{1} for output evels up to Q_{1}.
For larger output levels, the original average and margin revenue curves apply.
The new marginal revenue
curve is, therefore, the dark curve is, therefore, the dark the marginal cost curve at Q_{1}.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10.4 THE SOCIAL COSTS OF MONOPOLY POWER

Natural Monopoly
\qquad

- natural monopoly Firm that can produce the
entire output of the market at a cost lower than
what it would be if there were several firms.

Figure 10.12
Regulating the Price of a Natural
Monopoly Monopoly
firm is a natural monopoly
cale (declining average and
marginal costs) over its entire output range.
If price were regulated to be P_{o} the firm would lose money and go out of business.
Setting the price at P_{r} yields the largest possible output consisten usiness; excess profit is $z e$
business; excess profit is zero.

10.4 THE SOCIAL COSTS OF MONOPOLY POWER Regulation in Practice

- rate-of-return regulation Maximum price
allowed by a regulatory agency is based on the
(expected) rate of return that a firm will earn.

The difficulty of agreeing on a set of numbers to be used in rate-ofreturn calculations often leads to delays in the regulatory response to changes in cost and other market conditions.

The net result is regulatory lag-the delays of a year or more usually entailed in changing regulated prices

\qquad
\qquad
\qquad
\qquad

10.5 MONOPSONY

\qquad
\qquad
\qquad
\qquad
\qquad In (a), the competive buyer akes market price P as given. Therefore, marginal expenditure and
\qquad
In (b), the comperal;
constant and equal
quantity sold is found by equating price to marginal cost.
共 35 of 50

MONOPSONY
Monopsony and Monopoly Compared

Monopoly and Monopsony

These diagrams show the close analogy between monopoly and monopsony
(a) The monopolist produces where marginal revenue intersects marginal cost.

Average revenue exceeds marginal revenue, so that price exceeds marginal cost.
(b) The monopsonist purchases up to the point where marginal expenditure intersects marginal value. Marginal expenditure exceeds average expenditure, so that marginal value exceeds price.
Choyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld. 7e. 37 of 50

10.6 MONOPSONY POWER

10.6 MONOPSONY POWER

Sources of Monopsony Power
Elasticity of Market Supply
If only one buyer is in the market-a pure monopsonist-its
monopsony power is completely determined by the elasticity of marke supply. If supply is highly elastic, monopsony power is small and there is little gain in being the only buyer
\qquad

Number of Buyers
When the number of buyers is very large, no single buyer can have much influence over price. Thus each buyer faces an extremely elastic
\qquad supply curve, so that the market is almost completely competitive.

Interaction Among Buyers
If four buyers in a market compete aggressively, they will bid up the price close to their marginal value of the product, and will thus have little monopsony power. On the other hand, if those buyers compete less aggressively, or even collude, prices will not be bid up very much and the buyers' degree of monopsony power might be nearly as high as if there were only one buyer.

10.6
 MONOPSONY POWER

The Social Costs of Monopsony Power
Figure 10.17

10.6 MONOPSONY POWER

Bilateral Monopoly
\qquad

bilateral monopoly Market with only

 one seller and one buyer.Monopsony power and monopoly power will tend to counteract each \qquad other.

10.6 MONOPSONY POWER

EXAMPLE 10.4 Monopsony Power in U.S. Manufacturing

The role of monopsony power was
investigated to determine the extent to which variations in price-cost margins could be attributed to variations in monopsony power.
The study found that buyers' monopsony power had an important effect on the price cost margins of sellers.

In industries where only four or five buyers account for all or nearly all sales, pe price-cost margins of sellers would on average be as much as 10 percentage points lower than in comparable industries with hundreds of buyers accounting for sales.
Each major car producer in the United States typically buys an individual part from at least three, and often as many as a dozen, suppliers.
For a specialized part, a single auto company may be the only buyer.
As a result, the automobile companies have considerable monopsony power
10.7 LIMITING MARKET POWER: THE ANTITRUST LAWS

- antitrust laws Rules and regulations prohibiting actions that restrain, or are likely to restrain, competition.

There have been numerous instances of illegal combinations. For example:

- In 1996, Archer Daniels Midland Company (ADM) and two other major producers of lysine (an animal feed additive) pleaded guilty to criminal charges of price fixing.
- In 1999, four of the world's largest drug and chemical companies-Roche A.G. of Switzerland, BASF A.G. of Germany, Rhone-Poulenc of France, and Takeda Chemical Industries of Japan-were charged by the U.S
Department of Justice with taking part in a global conspiracy to fix the prices of vitamins sold in the United States
- In 2002, the U.S. Department of Justice began an investigation of price
fixing by DRAM (dynamic access random memory) producers. By 2006, five manufacturers-Hynix, Infineon, Micron Technology, Samsung, and
Elpida-had pled guilty for participating in an international price-fixing scheme.

10.7 LIMITING MARKET POWER: THE ANTITRUST LAWS
- parallel conduct Form of implicit collusion in which one firm consistently follows actions of another
- predatory pricing Practice of
pricing to drive current competitors out
of business and to discourage new entrants in a market so that a firm can enjoy higher future profits
10.7 LIMITING MARKET POWER: THE ANTITRUST LAWS

Enforcement of the Antitrust Laws \qquad
The antitrust laws are enforced in three ways:

1. Through the Antitrust Division of the Department of Justice.
2. Through the administrative procedures of the Federal Trade Commission. \qquad
3. Through private proceedings
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10.7 LIMITING MARKET POWER: THE ANTITRUST LAWS EXAMPLE 10.5 A Phone Call About Prices

Robert Crandall, president and CEO of American, made a phone call to Howard Putnam, president and chief executive of Braniff. It went like this:
Crandall: I think it's dumb as hell for Christ's sake, all right, to sit here and pound the @!\#\$\%\&! out of each other and neither one of us making a @!\#\$\%\&! dime.
Putnam: Well.
Crandall: I mean, you know, @!\#\$\%\&!, what the hell is the point of it?
\qquad
Putnam: But if you're going to overlay every route of American's on top of every route that Braniff has-I just can't sit here and allow you to bury us without giving our best effort.
Crandall: Oh sure, but Eastern and Delta do the same thing in Atlanta and have for years. \qquad
Putnam: Do you have a suggestion for me?
10.7 LIMITING MARKET POWER: THE ANTITRUST LAWS EXAMPLE 10.5 A Phone Call About Prices (continued)
Crandall: Yes, I have a suggestion for you. Raise your @!\#\$\%\&! fares
20 percent. l'Il raise mine the next morning.
Putnam: Robert, we.
Crandall: You'll make more money and I will, too.
Putnam: We can't talk about pricing!
Crandall: Oh @!\#\$\%\&!, Howard. We can talk about any @!\#\$\%\&! thing we want to talk about
Crandall was wrong. Talking about prices and agreeing to fix them is a clear violation of Section 1 of the Sherman Act.
However, proposing to fix prices is not enough to violate Section 1 of the Sherman Act: For the law to be violated, the two parties must agree to collude.
Therefore, because Putnam had rejected Crandall's proposal, Section 1 was not violated.
\qquad
\qquad
The U.S. Government said yes; Microsoft disagreed. Here is a brief road map of some of the U.S. Department of Justice's major claims and Microsoft's
responses. responses.
DOJ claim: Microsoft has a great deal of market power in the market for PC \qquad operaing systems-enough to meet the legal definition of monopoly power
MS response: Microsoft does not meet the legal test for monopoly power because it faces significant threats from potential competitors that offer or will
offer platforms to compete with Windows. \qquad
DOJ claim: Microsoft viewed Netscape's Internet browser as a threat to its
monopoly over the PC operating system market. In violation of Section 1 of the
Sherman Act, Microsoft entered into exclusionary agreements with compute
manufacturers and Internet service providers with the objective of raising the
cost to Netscape of making its browser available to consumers.
MS response: The contracts were not unduly restrictive. In any case,
Microsoft unilaterally agreed to stop most of them.
\qquad

DOJ claim: In violation of Section 2 of the Sherman Act, Microsoft engaged in practices designed to maintain its monopoly in the market for desktop PC operating systems. It tied its browser to the Windows 98 operating system, even though doing so was technically unnecessary. This action was predatory because it made it difficult or impossible for Netscape and other firms to successfully offer competing products.
MS response: There are benefits to incorporating the browser functionality into the operating system. Not being allowed to integrate new functionality into an operating system will discourage innovation. Offering consumers a choice
between separate or integrated browsers would cause confusion in the marketplace.
DOJ claim: In violation of Section 2 of the Sherman Act, Microsoft attempted to divide the browser business with Netscape and engaged in similar conduct with both Apple Computer and Intel.
MS response: Microsoft's meetings with Netscape, Apple, and Intel were for valid business reasons. Indeed, it is useful for consumers and firms to agree on common standards and protocols in developing computer software

