
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11.2 PRICE DISCRIMINATION

First-Degree Price Discrimination

- reservation price Maximum price that a customer is willing to pay for a good.
- first-degree price discrimination Practice of charging each customer her reservation price.
Figure 11.2
Additional Profit from Perfect First-Degree Price Discrimination
Because the firm charges each consur reservation price it is profitable to expand output to Q^{*}
When only a single price, P^{*}, is charged, the firm's variable profit is the area between the marginal revenue and marginal cost curves With perfect price discrimination, this profit expands to the area between the demand curve and the marginal cost curve.

variable profit Sum of profits on each incremental unit produced by a firm; i.e., profit ignoring fixed costs.

Perfect Price Discrimination
The additional profit from producing and selling an incremental unit is now the difference between demand and marginal cost.
Imperfect Price Discrimination

First-Degree Price Discrimination in Practice
Firms usually don't know the reservation price of every consumer, but sometimes reservation prices can be roughly dentified.
Here, six different prices are harged. The firm earns higher also benefit.
With a single price P_{4}^{*}, there are fewer consumers.
The consumers who now pay P_{5} or P_{6} enjoy a surplus.

11.2 PRICE DISCRIMINATION

Second-Degree Price Discrimination

- second-degree price discrimination Practice of charging different prices per unit for different quantities of the same good or service.
- block pricing Practice of charging different prices for different quantities or "blocks" of a good

- third-degree price discrimination Practice of dividing consumers
\qquad hird-degree price discrimination Practice of dividing consumers \qquad different prices to each group.

Creating Consumer Groups
If third-degree price discrimination is feasible, how should the firm decide what price to charge each group of consumers?

1. We know that however much is produced, total output should be divided between the groups of customers so that marginal revenues for each group are equal.
2. We know that total output must be such that the marginal revenue for each group of consumers is equal to the marginal cost of production.
11.2 PRICE DISCRIMINATION \qquad
Third-Degree Price Discrimination
\qquad
$\pi=P_{1} Q_{1}+P_{2} Q_{2}-C\left(Q_{T}\right)$
$\frac{\Delta \pi}{\Delta Q_{1}}=\frac{\Delta\left(P P_{1}\right)}{\Delta Q_{1}}-\frac{\Delta C}{\Delta Q_{1}}=0$ \qquad
 \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11.2 PRICE DISCRIMINATION
example 11.1 The Economics of Coupons and Rebates
\qquad

Coupons provide a means of price discrimination. \qquad
Studies show that only about 20 to 30 percent of all consumers regularly bother to clip, save, and use coupons
\qquad

Rebate programs work the same way
Only those consumers with relatively price-sensitive demands bother to send in the materials and request rebates.

Again, the program is a means of price discrimination.
11.2 PRICE DISCRIMINATION

EXAMPLE 11.1 The Fconomics of Coupons and Rehates

Product	PRICE ELASTICITY	
	Nonusers	Users
Toile tissue	-0.60	-0.66
Stuffing/dressing	-0.71	-0.96
Shampoo	-0.84	-1.04
Cooking/salad oil	-1.22	-1.32
Dry mix dinners	-0.88	-1.09
Cake mix	-0.21	-0.43
Cat food	-0.49	-1.13
Frozen entrees	-0.60	-0.95
Gelatin	-0.97	-1.25
Spaghetti sauce	-1.65	-1.81
Creme rinse/conditioner	-0.82	-1.12
Soups	-1.05	-1.22
Hot dogs	-0.59	-0.77

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Travelers are often amazed at the variety of fares available for round-trip flights from New York to Los Angeles.
Recently, for example, the first-class fare was above $\$ 2000$; the regular (unrestricted) economy fare was about \$1700, and special discount fares (often requiring the purchase of a ticket two weeks in advance and/or a Saturday night stayover) could be bought for as little as $\$ 400$
These fares provide a profitable form of price discrimination.
The gains from discriminating are large because different types of customers, with very different elasticities of demand purchase these different types of tickets.

Elasticity	FARE CATEGORY		
	First Class	Unrestricted Coach	Discounted
Price	-0.3	-0.4	-0.9
Income	1.2	1.2	1.8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11.3 INTERTEMPORAL PRICE DISCRIMINATION AND PEAK-LOAD PRICING \qquad
\qquad

- intertemporal price discrimination Practice of separating consumers with different demand functions into different groups by charging different prices at different points in time.
- peak-load pricing Practice of charging higher prices during peak periods when capacity constraints cause marginal costs to be high

INTERTEMPORAL PRICE DISCRIMINATION AND PEAK-LOAD PRICING

Intertemporal Price Discrimination \qquad
Figure 11.7
Intertemporal Price Discrimination Consumers are divided into groups by changing the price over time.
 Initially, the price is high. The firm captures surplus from consumers who have a high demand for the good and who are unwilling to wait to buy it.

Later the price is reduced to appeal to the mass market.
 AND PEAK-LOAD PRICING

Peak-Load Pricing
\qquad

Figure 11.8

Peak-Load Pricing

Demands for some goods and services increase sharply during

Charging a higher price P_{1} during the peak periods is more profitable for the firm than charging a single price at all times.

It is also more efficient because periods.

\qquad
\qquad
\qquad
\qquad
\qquad Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7 e. 16 of 42

\qquad
\qquad
\qquad

11.4 THE TWO-PART TARIFF

- two-part tariff Form of pricing in which consumers are charged both an entry and a usage fee. \qquad
Single Consumer

Figure 11.9
Two-Part Tariff with a Single
Consumer
The consumer has demand
The cons
curve D.
The firm maximizes profit by setting usage fee P equal to
marginal cost
and entry fee T^{*} equal to the entire surplus of the consumer.
\qquad
\qquad
\qquad
\qquad

11.4 THE TWO-PART TARIFF

\qquad

Many Consumers

Figure 11.11

Two-Part Tariff with Many Different Consumers

Total profit π is the sum of the profit from the entry fee π and the profit from sales π_{s} Both entry fee π_{a} and the profit from sales
π_{s} and π_{s} depend on T, the entry fee π_{s} and π_{s} d
$\pi=\pi_{\mathrm{a}}+\pi_{\mathrm{s}}=n(T) T+(P-M C) Q(n)$ where n is the number of entrants, which where n is he the entry fee T and Q is the rate of sales, which is greater the larger is n. Here T^{*} is the profit-maximizing entry fee, and T, we can start with a number for P, find the optimum T, and then estimate the resulting profit.
P is then changed and the corresponding T recalculated, along with the new profit level.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Copvriaht © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld. 7 7e. 20 of 42

11.4 THE TWO-PART TARIFF

EXAMPLE 11.5 Pricing Cellular Phone Service (continued)

Anmime	Namaty		
		macesac	
\%	sep	moteod	s.0.
,	\%ow	\%mater	en
(om		momed	sen
\%	\%an		s.0.0
${ }_{0}$	sem	tham	s.0.
${ }_{100}^{150}$	\%en		\%os
so	\%x\%	memates	s.
	\%nm	nateremen	
${ }_{\substack{20}}^{200}$	(s,	limied	se.
mom	\%ome	mbued	mx
500	\%sxo\%	mater	${ }_{x}$

11.5 BUNDLING

- bundling Practice of selling two or

 more products as a packageTo see how a film company can use customer heterogeneity to its advantage, suppose that there are two movie theaters and that their reservation prices for these two films are as follows:

	Gone wth the Wind	Gotting Gertie's Garter
Theater A	$\$ 12,000$	$\$ 3000$
Theater B	$\$ 10.000$	$\$ 4000$

If the films are rented separately, the maximum price that could be charged for Wind is $\$ 10,000$ because charging more would exclude Theater B. Similarly, the maximum price that could be charged for Gertie is $\$ 3000$.

But suppose the films are bundled. Theater A values the pair of films at $\$ 15,000(\$ 12,000+\$ 3000)$, and Theater B values the pair at
$\$ 14,000(\$ 10,000+\$ 4000)$. Therefore, we can charge each theater $\$ 14,000$ for the pair of films and earn a total revenue of $\$ 28,000$.
Why is bundling more profitable than selling the films separately? Because the relative valuations of the two films are reversed. the most for Wind is willing to pay the least for Gertie.
To see why this is critical, suppose demands were positively correlated-that is, Theater A would pay more for both films:

	Gone wth the Wind	Getting Gortlass Barter
Theater A	$\$ 12,000$	$\$ 4000$
Theater B	$\$ 10,000$	$\$ 3000$

If we bundled the films, the maximum price that could be charged for the package is $\$ 13,000$, yielding a total revenue of $\$ 26,000$, the same as by renting the films separately.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11.5 BUNDLING

Relative Valuations
\qquad

Figure 11.12 \qquad
Reservation Prices
Reservation prices r_{1} and r_{2} for two goods are shown for three
consumers, labeled A, B and C
Consumer A is willing to pay up to Consumer A is willing to pay up to
$\$ 3.25$ for good 1 and up to $\$ 6$ for good 2.

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
Mixed Bundling
Let's compare three strategies:

1. Selling the goods separately at prices $P_{1}=\$ 50$ and $P_{2}=\$ 90$
2. Selling the goods only as a bundle at a price of $\$ 100$.
3. Mixed bundling, whereby the goods are offered separately at prices $P_{1}=P_{2}=\$ 89.95$, or as a bundle at a price of $\$ 100$.

	P_{1}	P_{2}	P_{E}	Profit
Sold separately	\$50	\$90	-	\$150
Pure bundling	-	-	\$100	\$200
Mixed bundling	\$89.95	\$89.95	\$100	\$229.90

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{lccccc} & \text { Price } & \text { and Fries) } & \text { Price } & \text { Bundle } & \text { Saving } \\ \text { Chicken Sandwich } & \$ 3.49 & \text { Chicken Sandmch } & \$ 7.77 & 55.89 & \$ 1.88\end{array}$
Filet-OFish
Big Mac

Ouater Pounder	$\$ 3.09$
Ouarter Po	

Double Quarter Pounder	$\$ 3.69$	Double Quarter Pounder	$\$ 7.97$	$\$ 5.39$	$\$ 1.98$

Large Soda
The Complete Dinner versusà la Carte
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad purchase one good in order to purchase another
\qquad One of the main benefits of tying is that it often allows a firm
\qquad
Tying can have other uses. An important one is to protect customer goodwill connected with a brand name.
This is why franchises are often required to purchase inputs from the franchiser.

11.6 ADVERTISING

Figure 11.20

Effects of Advertising

AR and MR are and
revenue when the firm and marginal and $A C$ when the firm doesn't advertise,
and $A C$ and $M M$
marginal cost.
The firm produces Q_{0} and receives a price P_{0}.
Its total profit π_{0} is given by the grayshaded rectangle.
If the firm advertises, its average and marginal revenue curves shift to the right.
Average cost rises (to AC^{\prime}) but marginal cost remains the same.
The firm now produces Q_{1} (where $\mathrm{MR}^{\prime}=$
MC), and receives a price P_{1}.
Its total profit, π_{1}, is now larger
11.6 ADVERTISING

The price P and advertising expenditure A to maximize
profit, is given by:

$$
\pi=P Q(P, A)-C Q-A
$$

Advertising leads to increased output.
But increased output in turn means increased production costs, and this must be taken into account when comparing the costs and benefits of an extra dollar of advertising.
The firm should advertise up to the point that

$$
\begin{align*}
\mathrm{MR}_{\mathrm{Ads}} & =P \frac{\Delta Q}{\Delta A}=1+\mathrm{MC} \frac{\Delta Q}{\Delta A} \tag{11.3}\\
& =\text { full marginal cost of }
\end{align*}
$$

advertising advertising

$$
\mathrm{MR}_{\mathrm{Ads}}=P \frac{\Delta Q}{\Delta A}=1+\mathrm{MC} \frac{\Delta Q}{\Delta A}
$$

A Rule of Thumb for Advertising

$$
(P-\mathrm{MC}) \frac{\Delta Q}{\Delta A}=1
$$

Now multiply both sides of this equation by $A / P Q$, the advertising-to-sales ratio

- advertising-to-sales ratio Ratio of a firm's advertising expenditures to its sales

$$
\left.\frac{P-\mathrm{MC}}{P}\left[\frac{A \Delta Q}{Q}\right]=\frac{A}{\Delta A}\right]=\frac{1}{P Q}
$$

- advertising elasticity of demand Percentage change in quantity demanded resulting from a 1-percent increase in advertising expenditures
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
*11.6 ADVERTISING
EXAMPLE 11.7 Advertising in Practice
Convenience stores have lower price
elasticities of demand (around -5), but their
advertising-to-sales ratios are usually less
than those for supermarkets (and are often
zero). Why?
Because convenience stores mostly serve
customers who live nearby; they may
\qquad
\qquad
\qquad
\qquad supermarket.
\qquad
\qquad brand is at least as price elastic as it is for designer jeans. What justifies al the advertising? A very large advertising elasticity

*11.6 ADVERTISING	ADVERTISING			
example 11.7 Advertising in Practice (continued)				
	TABLE 11.7 Sales and Advertising Expenditures for Leading Brands of Over-the-Counter Drugs (in millions of dollars)			
		Sales	Advertising	Ratio (\%)
Pain Modications				
	Tyleol	855	1438	17
	Adsil	${ }^{36} 0$	91.7	${ }^{26}$
	Bayer	170	43.8	${ }^{26}$
	Exedin	130	${ }^{26.7}$	${ }^{21}$
Antaids				
	Alla Sesterer	160	52.2	${ }^{33}$
	Mrata	135	${ }^{32,8}$	${ }^{24}$
	Tums	135	27.6	20
Cold Remedios (decongestants)				
	Benadol	130	30.9	${ }^{24}$
	Suditad	115	22.6	25
Cough Medicine				
	Vids	${ }^{350}$	20.6	8
	Robitusin	205	37.7	19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

