
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad

Firms compete by selling differentiated products that are highly words, the for one another but not perfect substitutes. In other infinite.

There is free entry and exit: it is relatively easy for new firms to enter the market with their own brands and for existing firms to leave if their products become unprofitable.
\qquad
\qquad
\qquad
\qquad
\qquad

12.1 MONOPOLISTIC COMPETITION

Equilibrium in the Short Run and the Long Run
Figure 12.1
A Monopolistically
Compeatitive Firm in the Shoft and Long Run Because the firm is the only producer of tit
brand, itfaces a downward-sloping downward-sioping
demand curve. Price exceeds marginal cost and the firm has
monopoly power.
In the short run,
described in part (a),
price also exceeds
average cost, and the
average cost, and the
firm earns profits
shown by the yellow-
shaded rectangle.

Monopolistic Competition and Economic Efficiency

Figure 12.2
Comparison of
Comparison of
Monopolistically
Competitive and Perfectiy Compe
Under perfect
competition, pric
equals marginal cost.
The demand curve
facing the firm is
horizontal, so the zero
horizontal, so the zero
the point of minimum
average cost.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12.1 MONOPOLISTIC COMPETITION

In both types of markets, entry occurs until profits are driven to zero.
In evaluating monopolistic competition, these inefficiencies must be balanced against the gains to consumers from
product diversity.

Monopolistic Competition and Economic Efficiency
Figure 12.2 (continued)

$$
\begin{aligned}
& \text { Comparison of } \\
& \text { Monopolistically } \\
& \text { Competitive Equilibrium } \\
& \text { and Perfectly Compeetitive } \\
& \text { Equilibrium } \\
& \hline \text { Under monopolistic } \\
& \text { competition, price } \\
& \text { exceeeds marginal cost. } \\
& \text { Thus there is a } \\
& \text { deadweight loss, as } \\
& \text { shown by the yellow- } \\
& \text { shaded area. } \\
& \text { The demand curve is } \\
& \text { downward-sloping, so } \\
& \text { the zero-profit toont is } \\
& \text { to the left of the point of } \\
& \text { minimum average cost. }
\end{aligned}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

OLIGOPOLY

The Makings of Monopolistic Competition
\qquad
\qquad
In oligopolistic markets, the products may or may not be differentiated.
What matters is that only a few firms account for most or all of total \qquad production.
In some oligopolistic markets, some or all firms earn substantial profits over the long run because barriers to entry make it difficult \qquad or impossible for new firms to enter.
Oligopoly is a prevalent form of market structure. Examples of oligopolistic industries include automobiles, steel, aluminum petrochemicals, electrical equipment, and computers

12.2 OLIGOPOLY

Equilibrium in an Oligopolistic Market
\qquad

흔 When a market is in equilibrium, firms are doing the best they can and have no reason to change their price or output.

Nash Equilibrium Equilibrium in oligopoly markets means that each firm will want to do the best it can given what its competitors are doing, and these competitors will do the best they can given what that firm is doing.

- Nash equilibrium Set of strategies or actions in which each firm does the best it can given its competitors' actions.
- duopoly Market in which two firms compete with each other

\qquad
\qquad
\qquad
\qquad
\qquad output and the amount it thinks its competitor will produce

```
Figure 12.4
```

Reaction Curves
and Cournot Equilibrium
Firm 1's reaction curve shows
Firm 1's reaction curve show
how much it will produce as
function of how much it think
Firm 2 will produce
Firm 2's reaction curve shows its
output as a function of how much
output as a function of how
it thinks Firm 1 will produce.
In Cournot equilibrium, each firm
correctly assumes the amount
correctly assumes the amount
hat its competitor will produce
and thereby maximizes its own
profits. Therefore, neither firm will
move from this equilibrium.

Cournot equilibrium Equilibrium in the Cournot model in which each firm correctly assumes how much its competitor will produce and sets its own production level accordingly.

OLIGOPOLY

The Linear Demand Curve-An Example
Duopolists face the following market demand curve $P=30-Q$
Also, $M C_{1}=\mathrm{MC}_{2}=0$
Total revenue for firm 1: $R_{1}=P Q_{1}=(30-Q) Q_{1}$
then $\mathrm{MR}_{1}=\Delta R_{1} / \Delta Q_{1}=30-2 Q_{1}-Q_{2}$
Setting $\mathrm{MR}_{1}=0$ (the firm's marginal cost) and solving for Q_{1}, we find
Firm 1's reaction curve: $\quad Q_{1}=15-\frac{1}{2} Q_{2}$
By the same calculation, Firm 2's reaction curve: $\quad Q_{2}=15-\frac{1}{2} Q_{1} \quad$ (12.2)
Cournot equilibrium: $Q_{1}=Q_{2}=10$
Total quantity produced: $\quad Q=Q_{1}+Q_{2}=20$

12.2 OLIGOPOLY

The Linear Demand Curve-An Example
If the two firms collude, then the total profit-maximizing quantity can be obtained as follows:

OLIGOPOLY

The Linear Demand Curve-An Example
\qquad

Figure 12.5
Duopoly Example
The demand curve is $P=$
$30-Q$, and both firms
have zero marginal cost.
in Cournot equilibrium,
each firm produces 10
The collusion curve shows combinations of Q_{1} and Q If the firmse luld If the firms collude and share profits equally, eac will produce 7.5 .
competitive equilibrium, in which price equals marginal cost and profit is
zero. zero.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OLIGOPOLY
First Mover Advantage-The Stackelberg Model
Stackelberg model Oligopoly model in which one firm sets its output before other firms do.

PRICE COMPETITION

Price Competition with Homogeneous Products-The Bertrand Model

- Bertrand model Oligopoly model in which firms produce a
homogeneous good, each firm treats the price of its competitors
as fixed, and all firms decide simultaneously what price to
charge.
$P=30-Q$
$\mathrm{MC}_{1}=\mathrm{MC}_{2}=\$ 3$
$Q_{1}=Q_{2}=9$, and in Cournot equilibrium, the market price is $\$ 12$ so that each firm makes a profit of $\$ 81$.
Nash equilibrium in the Bertrand model results in both firms
setting price equal to marginal cost: $P_{1}=P_{2}=\$ 3$. Then industry
output is 27 units, of which each firm produces 13.5 units, and
both firms earn zero profit.
In the Cournot model, because each firm produces only 9 units
the market price is $\$ 12$. Now the market price is $\$ 3$. In the
Cournot model, each firm made a profit; in the Bertrand model,
the firms price at marginal cost and make no profit.

\qquad
\qquad

12.3 PRICE COMPETITION

Price Competition with Differentiated Products

Figure 12.6

Nash Equilibrium in Prices Here two firms sell a differentiated depends both on its own price and on its competitor's price. The two firms choose their prices at the same ime, each takng its competitor's price as given.
Firm 1's reaction curve gives its profitmaximizing price as a function of the price that Firm 2 sets, and similarly for Firm 2.
The Nash equilibrium is at the
The Nash equilitrium is at ine When each firm charges a price of \$4, it is doing the best it can given its competitor's price and has no incentive to change price.

Also shown is the collusive equilibrium: If the firms cooperatively set price, they will the firms co.
choose $\$ 6$.
Copyrioht © 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld, 7e. 20 of 35
 THE PRISONERS' DILEMMA

In our example, there are two firms,
each of which has fixed costs of $\$ 20$
each of which has fixed costs of $\$ 20$
and zero variable costs. They face the
demand curves:
Firm 1's demand: $\quad Q_{1}=12-2 P_{1}+P_{2}$
Firm 2's demand: $\quad Q_{2}=12-2 P_{2}+P_{1}$
We found that in Nash equilibrium each TABLE 12.3 Payoff Matrix for Pricing Game
firm will charge a price of $\$ 4$ and earn a
profit of $\$ 12$, whereas if the firms
collude, they will charge a price of $\$ 6$
and earn a profit of $\$ 16$.
But if Firm 1 charges $\$ 6$ and Firm 2
charges only $\$ 4$, Firm 2's profit will
increase to $\$ 20$. And it will do so at the
expense of Firm 1's profit, which will fall
to $\$ 4$.
$\pi_{2}=P_{2} Q_{2}-20=(4)[12-(2)(4)+6]-20=\$ 20$
$\pi_{1}=P_{1} Q_{1}-20=(6)[12-(2)(6)+4]-20=\$ 4$
Copyright @ 2009 Pearson Education, Inc. Publishing as Prentice Hall • Microeconomics • Pindyck/Rubinfeld. 7e. 22 of 35
12.4 COMPETITION VERSUS COLLUSION:

THE PRISONERS' DILEMMA \qquad
Payoff Matrix

- noncooperative game Game in which negotiation and \qquad
\qquad
\qquad
\qquad
\qquad

```
12.4 COMPETITION VERSUS COLLUSION:
    THE PRISONERS' DILEMMA
    EXAMPLE 12,3 Procter & Gamble in a Prisoners' Dilemma
    We argued that P&G should expect its competitors to charge a price of $1.40 and
    should do the same. But P&G would be better off if it and its competitors all
    charged a price of $1.50
12.4 COMPETITION VERSUS COLLUSION: THE PRISONERS' DILEMMA
```

-	TABLE 12.5 Payoff Matrix for Pricing Problem			
喜		Charge $\$ 1.4$	nd KAO Charge \$1.50	
\bigcirc	P\&G Charge \$1.40	\$12, \$12	\$29, \$11	
$\stackrel{\square}{\square}$	Charge \$1.50	\$3, \$21	\$20, \$20	
$\begin{aligned} & \stackrel{0}{\sum_{2}} \\ & \underset{\sim}{2} \end{aligned}$	So why don't they charge $\$ 1.50$? Because these firms are in a prisoners' dilemma. No matter what Unilever and Kao do, P\&G makes more money by charging $\$ 1.40$.			
Copyright 2009 Pearson Education, Inc. Publishing as Prentice Hall - Microeconomics . Pindyck/Rubinfeld. 7 . 24 of 35				

So why don't they charge $\$ 1.50$? Because these firms are in a prisoners' dilemma. No matter what Unilever and Kao do, P\&G makes more money by charging \$1.40.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
enforcement of binding contracts are not possible.

- payoff matrix Table showing profit (or payoff) to each firm given its decision and the decision of its competitor.
The Prisoners' Dilemma
- prisoners' dilemma Game theory example in which two
prisoners must decide separately whether to confess to a crime,
if a prisoner confesses, he will receive a lighter sentence and
his accomplice will receive a heavier one, but if neither
confesses, sentences will be lighter than if both confess.
TABLE 12.4 Payoff Matrix for Prisoners' Dilemma
Prisoner B
Confess Don't confess

	- payoff matrix Table showing profit (or payoff) to each firm given its decision and the decision of its competitor. The Prisoners' Dilemma - prisoners' dilemma Game theory example in which two prisoners must decide separately whether to confess to a crime if a prisoner confesses, he will receive a lighter sentence and his accomplice will receive a heavier one, but if neither confesses, sentences will be lighter than if both confess.		
	TABLE 12.4 Payoff Matrix for Prisoners' Dilemma		
		Prisoner B	
		Confess	Don't confess
	Prisoner A Confess	-5, -5	-1, -10
	Prisoner A Don't confess	-10, -1	-2, -2

\qquad
12.5 IMPLICATIONS OF THE PRISONERS' DILEMMA FOR OLIGOPOLISTIC PRICING
Price Rigidity
\qquad

- price rigidity Characteristic of oligopolistic markets costs or demands change \qquad
- kinked demand curve model Oligopoly model in which each firm faces a demand curve kinked at the currently prevailing price: at higher prices demand is very elastic, whereas at lower prices it is inelastic.
12.5 IMPLICATIONS OF THE PRISONERS' DILEMMA FOR OLIGOPOLISTIC PRICING
Price Rigidity
Figure 12.7
The Kinked Demand Curve
Each firm believes that if it raises
its
P^{*}, price above of the current price
nompetitors will
follow suit, so it will lose most of its
sales.
Each firm also believes that if it
suit, and its sales will increase
only to the extent that market
demand increases
As a result, the firm's demand
curve D is kinked at price P^{*}, and
its marginal revenue curve MR is discontinuous at that point.
If marginal cost increases from MC
to MC^{\prime}, the firm will still produce
the same output level Q^{*} and
charge the same price P^{*}.

feld. 7 7e. 26 of 35
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
12.5 IMPLICATIONS OF THE PRISONERS' DILEMMA FOR OLIGOPOLISTIC PRICING

Price Signaling and Price Leadership \qquad

- price signaling Form of implicit collusion in which a firm announces a price increase in the hope that other firms will follow suit \qquad
- price leadership Pattern of pricing in which one firm regularly announces price changes that other firms then \qquad match.
12.5 IMPLICATIONS OF THE PRISONERS' DILEMMA FOR OLIGOPOLISTIC PRICING
Price Signaling and Price Leadership
EXAMPLE 12.4 Price Leadership and Price Rigidity \qquad
The interest rate that banks charge large corporate clients is called the prime rate.
Because it is widely known, it is a convenient focal point for
price leadership.
The prime rate changes only when money market conditions cause other interest rates to rise or fall substantially. When that
happens, one of the major banks announces a change in its
rate and other banks quickly follow suit.
Different banks act as leader from time to time, but when one
bank announces a change, the others follow within two or three days.
12.5 IMPLICATIONS OF THE PRISONERS' DILEMMA FOR OLIGOPOLISTIC PRICING \qquad
Price Signaling and Price Leadership

EXAMPLE 12.4

Figure 12.8
Price Leadership and Pr
in Commercial Banking

Prime Rate versus Corporate Bond Rate

The prime rate is the rate that major banks charge large corporate customer for shor-t-term loans. It changes only infrequenty
because banks are reluctant to undercut one another. When a change does occur, it begins with one bank, and other banks quickly follow suit. The return on long-term
corporate bonds. Because
these bonds are widely traded, this rate fluctuates with market conditions.

12.5 IMPLICATIONS OF THE PRISONERS' DILEMMA FOR OLIGOPOLISTIC PRICING

The Dominant Firm Model

Price Setting by a Dominant Firm
D is the market demand curve, and
S_{F} is the supply curve (i.e., the
aggregate marginal cost curve) of the
smaller fringe firms.
The dominant firm must determine its
demand curve $D_{\text {. }}$. As the figure
demand curve D_{D}. As the figure
shows, this curve is just the
difference between market demand
and the supply of fringe firms.
At price P_{1}, the supply of fringe firms
is just equal to market demand; thus
the dominant firm can sell nothing.
At a price P_{2} or less, fringe firms will
dominant firm faces the market
demand curve.
At prices between P_{1} and P_{2}, the
dominant firm faces the demand
curve D_{D}.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
The Dominant Firm Model

$$
\text { Figure } 12.9 \text { (continued) }
$$

Price Setting by a Dominant Firm
The dominant firm produces a
quantity Q_{p} at the point where its marginal revenue $M R_{D}$ is equal to its marginal cost MC_{D}.
The corresponding price is P^{*}. At this price, fringe firms sell Q_{F} Total sales equal Q_{T}

- dominant firm Firm with a large share of total sales that sets price to maximize profits, taking into account the supply response of smaller firms.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
12.6 CARTELS

Producers in a cartel explicitly agree to cooperate in setting prices and output levels.
Analysis of Cartel Pricing
Figure 12.10 The OPEC Oil Cartel
TD is the total world demand curve for oil, and Sc is the competitive (non-OPEC) supply curve.
OPEC's demand $D_{\text {opec }}$ is the difference between the two
Because both total demand and
comper's supply are inelastic
's demand is inelastic
OPEC's profit-maximizing quantity
$Q_{\text {opec }}$ its marginal revenue and marginal cost curves; at this quantity, OPEC charges price P^{*}.
If OPEC producers had not
cartelized, price would be P_{c}, where
OPEC's demand and marginal cost
curves intersect.

32 of 35

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

In intercollegiate athletics, there are many firms and
consumers, which suggests that the industry is competitive. But the persistently high level of profits in this industry is
inconsistent with competition. This profitability is the result of monopoly power, obtained via cartelization.
The cartel organization is the National Collegiate Athletic Association (NCAA). The NCAA restricts competition in a number of important ways.

- To reduce bargaining power by student athletes, the NCAA creates and enforces rules regarding eligibility and terms of compensation
- To reduce competition by universities, it limits the number of games that can be played each season and the number of teams that can participate in each division.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
12.6 CARTELS \qquad EXAMPLE 12.6 The Milk Carte

In 1996, the federal government allowed milk producers in the six New England states to cartelize. The cartel-called the Northeast Interstate Dairy Compact-set minimum wholesale prices for milk, and was exempt from the antitrust laws. The result was that consumers in New England paid more for a gallon of milk than consumers elsewhere in the nation.

Studies have suggested that the cartel covering the New England states has caused retail prices of milk to rise by only a few cents a gallon. Why so little? The reason is that the New England cartel is surrounded by a fringe of noncartel producers-namely, dairy farmers in New York, New Jersey, and other states. Expanding the cartel, however, would have shrunk the competitive fringe, thereby giving the cartel a greater

influence over milk prices.

