
ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 1

USE CASE DESCRIPTIONS
 A list of use cases and use case diagrams provides an overview of all the use cases for a system.

 Detailed information about each use case is described with a use case description.

 A use case description is a textual model lists and describes the processing details for a use case.

 Implied in all use cases is a person who uses the system - an actor.

 An actor is always outside the automation boundary of the system but may be part of the manual
portion of the system.

 By defining actors as those who interact with the system, the exact interactions to which the automated
system must respond can be defined. An actor could also be seen as a role. For example, the use case
Create Customer Account might involve a customer service rep talking to the customer on the phone.

 To create a comprehensive, robust system that truly meets users’ needs, the detailed steps of each use
case must be documented.

A scenario or use case instance is a unique set of internal activities within a use case and represents a unique
path through the use case.

Brief Use Case Descriptions
 Brief description can be used for very simple use cases - system to be developed is a small, well-

understood application.

 A simple use case would normally have a single scenario and few exception conditions.

Fully Developed Use Case Descriptions
 Fully developed use case description - most formal method for documenting the use case.

 A fully developed use case description increases the probability that the analyst/developers understand
the business processes and the ways the system must support them

ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 2

Example: Fully developed use case description for Create customer account (Standard template)

1
2
3
4

5
6
7
8

9

10

11

ACTIVITY DIAGRAMS FOR USE CASES

 Document a use case with an activity diagram

 Activity diagram is an easily understood diagram to document the workflows of the business processes

 Activity diagram is a standard UML diagram, documents flow of activities for each use case

 are helpful when the flow of activities for a use case is complex



Preconditions = The state of the system

must be in in order for the use case to

begin, what objects must exist,

information required, and condition of

the actor prior to beginning the use case

Postconditions = What must be true upon

completion of the use case. Indicate what

new objects are created or updated by

the use case and how objects need to be

associated. Are the expected results and

indicate which objects are important for

design

objects involved in the use case are

important for design

ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 3

Activity diagram for Fill shopping cart showing richer user experience

THE SYSTEM SEQUENCE DIAGRAM—IDENTIFYING INPUTS AND OUTPUTS

 In O-O approach, the flow of information is either to and from actors or back and forth between internal objects.

 System sequence diagram (SSD) a diagram showing the sequence of messages between an external actor and the
automated system during a use case or scenario

 The SSD documents the inputs and the outputs and identifies the interaction between actors and the system.

 An SSD is a type of interaction diagram.

 Interaction diagram - either a communication diagram or a sequence diagram that shows the interactions between
objects

SSD Notation

 A generic SSD is shown below.

 As with a use case diagram, the stick figure represents an actor — a person (or role) that interacts with the system.

 In a use case diagram, the actor “uses” the system, but the emphasis in an SSD is on how the actor “interacts” with
the system by entering input data and receiving output data.

 The box labelled :System is an object that represents the entire automated system.

 In SSDs and all other interaction diagrams, analysts use object notation instead of class notation

 In object notation, a box refers to an individual object, not the class of all similar objects.

 The notation is simply a rectangle with the name of the object underlined.

 In an SSD, the only object included is one representing the entire system.

 Underneath the actor and :System are vertical dashed lines called lifelines.

Ovals show the other use cases

that are invoked while filling the

shopping cart. The activities of the

use case go in between the other

use cases.

Activity

ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 4

 A lifeline, or object lifeline, is the extension of that object — either actor or object — during the use case.

 The arrows between the lifelines represent the message and input that are sent by the actors.

 Each arrow has an origin and a destination.

 The origin of the message is the actor or object that sends it

 The destination actor or object of a message is indicated by the lifeline that is touched by the arrowhead.

 Purpose of lifelines is to indicate the sequence of the messages sent and received by the actor and object.

 The sequence of messages is read from top to bottom in the diagram.

 A message is labelled to describe its purpose and any input data being sent.

 The message name should follow the verb-noun syntax to make the purpose clear.

 The arrows are used to represent a message and input data

System Sequence Diagram (SSD) – LOOP FRAME

 SSD Loop frames – The message and its return are located inside a larger rectangle where everything in the frame
is repeated

Notation:
*[true/false condition] return-value := message-name (parameter-list)
e.g. *address details := enterAddress (address) where *= loop indicator

 The parameter-list for each message is more difficult to determine - several iterations may be required before a
correct, complete list is obtained. Attributes from the classes should be listed as parameters.

Input message

Object lifeline: shows the

sequence of messages from

top to bottom

Returned value / message

The object

(underlined)

representing the

automated system

Actor interacting with

the system

Item information:
description, price, quantity

Optional note to explain
something in the diagram

ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 5

 Sequence diagrams use two additional frames to depict processing logic, as shown in Fig A and Fig B below.

 The opt frame is used when a message or a series of messages is optional or based on some true/false condition.

 The alt frame is used with if-then-else logic.

Figure A: Opt Frame (true/false condition) Figure B: Alt frame (if, then, else)

The development of an SSD based on an activity diagram falls into four steps:

1. Identify the input messages — identify where there are locations with a workflow arrow crossing the boundary
line between the actor and the system. At each location that the workflow crosses the automation boundary,
input data is required; therefore, a message is needed.

2. Describe the message from the external actor to the system by using the message notation described earlier
(names of the messages reflect the services that the actor is requesting of the system e.g. createNewCustomer,
createAddress, and enterCreditCard - note verb is in small letters, noun with capital letter)

3. Identify and add any special conditions on the input messages, including iteration and true/false conditions
4. Identify and add the output return messages - There are two options for showing return information: as a return

value on the message itself or as a separate return message with a dashed arrow.

EXAMPLE: Develop an SSD for the Ship items use case that is shown as a fully developed use case description:

ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 6

Answer: SSD for the Use Case Ship Items

Detailed explanation:

 The actor has 5 numbered steps in the flow of activities, therefore there are 5 inputs into the system.
1. getNextSale - No parameter is needed for getNextSale - the system will return information for the next

sale to be shipped. Parameter value is blank i.e. ().
2. setShipper – selected from a list – use shipperID
3. recordShippedItem – Loops until all items are recorded as shipped
4. recordBackorder – Loops until all items are unavailable items are recorded as backorders
5. getShippingLabel – request shipping label supplying parameters package size and weight. The system uses

that information, along with the shipper and address, to produce the shipping label and record the cost
back to the actor.

ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 7

THE STATE MACHINE DIAGRAM — IDENTIFYING OBJECT BEHAVIOUR
 When defining requirements, analysts need to identify and document which domain objects require status

checking and which business rules determine valid status conditions e.g. a business rule is that a customer sale
shouldn’t be shipped until it has been paid for

 State - a condition during an object’s life when it satisfies some criterion, performs some action, or waits for an
event

 States are described as semi-permanent conditions because external events can interrupt a state and cause the
object to transition to a new state.

 A transition is the movement of an object from one state to another state.

 State machine diagram - a diagram showing the life of an object in states and transitions
o Can be developed for any problem domain classes that have complex behaviour or status conditions that

need to be tracked
o Is composed of ovals representing the states of an object and arrows representing the transitions
o Starting point of a state machine diagram is a black dot, which is called a pseudostate.
o The first shape after the black dot is the first state of the object
o The arrow leaving the first state (called the origin) is called a transition and it links to another state

(destination) on completion of the event
o The transition arrow is labelled with a string to describe its components
o The transition-name is the name of a message event that triggers the transition and causes the object to

leave the origin state.
o The format is very similar to a message in an SSD.

 The transition label consists of the following syntax with three components:

transition-name (parameters, …) [guard-condition] / action-expression

 The guard-condition is a qualifier or test on the transition, and it is simply a true/false condition that must be
satisfied before the transition can fire.

 For a transition to fire, first the trigger must occur and then the guard must evaluate to true.

 System sequence diagrams messages have a similar test, which is called a true/false condition. This true/false
condition is a test on the sending side of the message, and before a message can be sent, the true/false condition
must be true

 In contrast, the guard-condition is on the receiving side of the message. The message may be received, but the
transition fires only if the guard-condition is also true.

Composite States and Concurrency
 The condition of being in more than one state at a time is called concurrency, or “concurrent states”

 Can be shown using a synchronization bar and concurrent paths, as in an activity diagrams

 A transition could be split with a synchronization bar so one path goes to the On state and the other path goes to
the Idle, Printing, and Selfcheck states.

 A path is a sequential set of states and transitions.

 Another way to show concurrent states is to have states nested inside other, higher-level states called composite
states

SSD for a Printer with concurrency

ICT2622 Object-Oriented Analysis Notes Phase Ch 5 – Summary Notes
SATZINGER JACKSON BURD (6TH EDITION)

CHAPTER 5: Extending the Requirements Models

Page 8

Composite state contains nested states and transition paths

How to develop a state machine diagram

 The primary challenge in building a state machine diagrams:
1. To identify the right states for the object
2. To identify and handle composite states with nested threads

 Developing state machine diagrams is an iterative behaviour

Rules for Developing State Machine Diagrams

1. Review the class diagram and select the classes that might require state machine diagrams

 Include only those classes that have multiple status conditions that are important for the system to track

 Then begin with the classes that appear to have the simplest state machine diagrams

2. For each selected class in the group, make a list of all the status conditions you can identify - brainstorm session
with the whole team

 The states must reflect the states for the real-world objects that will be represented in software

3. Begin building state machine diagram fragments by identifying the transitions that cause an object to leave the
identified state

4. Sequence these state-transition combinations in the correct order — then aggregate these combinations into

larger fragments

5. Review the paths and look for independent, concurrent paths

6. Look for additional transitions

7. Expand each transition with the appropriate message event, guardcondition, and action-expression

8. Review and test each state machine diagram

