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The need to prove



In Mathematics we prove things
‘The base angles of an isoceles triangle are equal’ seems obvious to

a person with mathematical aptitude.

A B

ab if a ∼= b then A ∼= B

Another example of a statement that seems obvious to such a person
is ‘each positive integer factors into a product of primes’.

But is the Pythagorean Theorem ‘in a right triangle the square of
the length of the hypoteneuse is equal to the sum of the squares of
the other two sides’ perfectly clear? Does it not require an argument?

A characteristic of our subject is that we show that new results
follow logically from those already established.
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Why we prove, not just convince
Here are examples of assertions that seem convincing but turn out

to be false.

I At first we may guess that the polynomial n2 + n+ 41 outputs
only primes.

n 0 1 2 3 4 5 6 7

n2 + n+ 41 41 43 47 53 61 71 83 97

However, that pattern breaks down; for n = 41 the output
412 + 41+ 41 is clearly divisible by 41.

I When decomposed, 18 = 21 · 32 has an odd number 1+ 2 of
prime factors, while 24 = 23 · 31 has an even number 3+ 1 of
them. We say that 18 is of odd type and 24 is of even type.

n 1 2 3 4 5 6 7 8 9

type even odd odd even odd even odd odd even

Pòlya conjectured that below any n > 1 the even types do not
outnumber the odd types. The numerical evidence is strong—
the statement holds until 906 150 257—but that number gives a
counterexample.
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Elements of logic



Propositions
A proposition is an assertion that has a truth value, either ‘true’ or

‘false’.

These are propositions: ‘2 + 2 = 4’ and ‘Two circles in the plane
intersect in either zero points, one point, two points, or all of their
points.’

These are not propositions: ‘3+ 5’ and ‘x is not prime.’
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Negation
Prefixing a proposition with not inverts its truth value.
‘It is not the case that 3+ 3 = 5’ is true.
‘It is not the case that 3+ 3 = 6’ is false.

So the truth value of ‘not P’ depends only on the truth of P. We
say ‘not’ is a unary logical operator or a unary boolean function since
it takes one input, a truth value, and yields as output a truth value.
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Conjunction, disjunction
A proposition consisting of the word and between two

sub-propositions is true if the two halves are true.
‘3+ 1 = 4 and 3− 1 = 2’ is true
‘3+ 1 = 4 and 3− 1 = 1’ is false
‘3+ 1 = 5 and 3− 1 = 2’ is false

A compound proposition constructed with or between two
sub-propositions is true if at least one half is true.

‘2 · 2 = 4 or 2 · 2 6= 4’ is true
‘2 · 2 = 3 or 2 · 2 6= 4’ is false
‘2 · 2 = 4 or 3+ 1 = 4’ is true

So ‘and’ and ‘or’ are binary logical operators.
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Truth Tables
Write ¬P for ‘not P’, P ∧Q for ‘P and Q’, and P ∨Q for ‘P or Q’.

We can describe the action of these operators using truth tables.

P ¬P

F T

T F

P Q P ∧Q P ∨Q

F F F F

F T F T

T F F T

T T T T

One advantage of this notation is that it allows formulas of a
complexity that would be awkward in a natural language. For
instance, (P ∨Q)∧ ¬(P ∧Q) is hard to express in English.
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Sometimes we prefer using 0 for F and 1 for T . One reason for the
preference is that on the left side of the tables the rows make the
ascending binary numbers.

P P̄

0 1

1 0

P Q P ·Q P +Q

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1

In this context ‘not P’ is symbolized P̄. Note that P̄ = 1− P.
The table makes clear why ‘P and Q’ is symbolized with a

multiplication dot P ·Q.
For ‘P or Q’ the plus sign is a good symbol because ‘or’

accumulates the truth value T .
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Other operators: Exclusive or
Disjunction models sentences meaning ‘and/or’. In contrast, ‘Live

free or die’, ‘Eat your dinner or no dessert’, and ‘Give me the money
or the hostage gets it’ all mean one or the other, but not both.

P Q P XOR Q

F F F

F T T

T F T

T T F



Other operators: Implies
We model ‘if P then Q’ this way.

P Q P → Q

F F T

F T T

T F F

T T T

Here P is the antecedent while Q is the consequent.



Other operators: Bi-implication
Model ‘P if and only if Q’ with this.

P Q P ↔ Q

F F T

F T F

T F F

T T T

Mathematicians sometimes write ‘iff’.



All binary operators
We can lists all of the binary logical operators.

P Q P α0 Q

F F F

F T F

T F F

T T F

P Q P α1 Q

F F F

F T F

T F F

T T T

. . .

P Q P α15 Q

F F T

F T T

T F T

T T T

These are the unary ones.

P β0P

F F

T F

P β1P

F F

T T

P β2P

F T

T F

P β3P

F T

T T

A zero-ary operator is constant so there are two: T and F.
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Evaluating complex statements
No matter how hard the propositional logic sentence, with patience

we can calculate how the output truth values depend on the values of
the inputs.

Here is the work for (P → Q)∧ (P → R).

P Q R P → Q P → R (P → Q)∧ (P → R)

F F F T T T

F F T T T T

F T F T T T

F T T T T T

T F F F F F

T F T F T F

T T F T F F

T T T T T T
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Tautology, Satisfiability, Equivalence
A formula is a tautology if it evaluates to T for every value of the

variables. A formula is satisfiable if it evaluates to T for at least one
value of the variables.

Two propositional expressions are logically equivalent if they give
the same input-output relationship. Check that the expressions E0
and E1 are equivalent by using truth tables to verify that E0 ↔ E1 is
a tautology.

For instance, P ∧Q and Q∧ P are equivalent. Another example is
that P → Q and ¬Q→ ¬P are equivalent.
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Non-obvious lines in the implication table

P Q P → Q

F F T

F T T

T F F

T T T

Our definition of implies takes ‘if Babe Ruth was president then
1 + 2 = 4’ to be a true statement, because its antecedent is false.
Similarly we take ‘if Mallory reached the summit of Everest then
1 + 2 = 3’ to be true because its consequent is true. Why define
implication this way?

Standard mathematical practice defines implication so that

if n is a perfect square then n is not prime

is true for all n ∈ N. Use n = 6 to get that F→ T must evaluate to T .
Use n = 3 to get that F→ F should yield T . For T → T take n = 4.
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Points about implication
P Q P → Q

F F T

F T T

T F F

T T T

I As noted on the prior slide, the antecedent P need not be
materially connected to the consequent Q.

I Also noted there are: (1) if the antecedent P is false then the
statement as a whole is true, said to be vacuously true and (2) if
the consequent Q is true then the statement as a whole is true.

I Truth tables show that P → Q is logically equivalent to
¬(P ∧ ¬Q), to ¬P ∨Q, and also to the contrapositive ¬Q→ ¬P.

I On a table in front of you are four cards, marked ‘A’, ‘B’, ‘0’,
and ‘1’. You must verify the truth of the implication, ‘if a card
has a vowel on the one side then it has an even number on the
other.’ How to do it, turning over the fewest cards? (This is the
Wason test ; fewer than 10% of Americans get it right.)
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Predicates, Quantifiers
The statement

‘if n is odd then n is a perfect square’ (∗)

involves two clauses, ‘n is odd’ and ‘n is square’. For each the truth
value depend on the variable. A predicate is a truth-valued function.
An example is the function Odd that takes an integer as input and
yields either T or F, as in Odd(5) = T . Another example is Square, as
in Square(5) = F.

A mathematician stating (∗) would mean that it holds for all n.
We denote ‘for all’ by ∀ so the statement is formally written
∀n ∈ N

[
Odd(n)→ Square(n)

]
. (It is of course a false statement.)

A quantifier describes for how many values of the variable the
clause must be true, in order for the statement as a whole to be true.
Besides ‘for all’ the other common quantifier is ‘there exists’, denoted
∃. The statement ∃n ∈ N

[
Odd(n)→ Square(n)

]
is true.



Predicates, Quantifiers
The statement

‘if n is odd then n is a perfect square’ (∗)

involves two clauses, ‘n is odd’ and ‘n is square’. For each the truth
value depend on the variable. A predicate is a truth-valued function.
An example is the function Odd that takes an integer as input and
yields either T or F, as in Odd(5) = T . Another example is Square, as
in Square(5) = F.

A mathematician stating (∗) would mean that it holds for all n.
We denote ‘for all’ by ∀ so the statement is formally written
∀n ∈ N

[
Odd(n)→ Square(n)

]
. (It is of course a false statement.)

A quantifier describes for how many values of the variable the
clause must be true, in order for the statement as a whole to be true.
Besides ‘for all’ the other common quantifier is ‘there exists’, denoted
∃. The statement ∃n ∈ N

[
Odd(n)→ Square(n)

]
is true.



Predicates, Quantifiers
The statement

‘if n is odd then n is a perfect square’ (∗)

involves two clauses, ‘n is odd’ and ‘n is square’. For each the truth
value depend on the variable. A predicate is a truth-valued function.
An example is the function Odd that takes an integer as input and
yields either T or F, as in Odd(5) = T . Another example is Square, as
in Square(5) = F.

A mathematician stating (∗) would mean that it holds for all n.
We denote ‘for all’ by ∀ so the statement is formally written
∀n ∈ N

[
Odd(n)→ Square(n)

]
. (It is of course a false statement.)

A quantifier describes for how many values of the variable the
clause must be true, in order for the statement as a whole to be true.
Besides ‘for all’ the other common quantifier is ‘there exists’, denoted
∃. The statement ∃n ∈ N

[
Odd(n)→ Square(n)

]
is true.



Examples of statements written formally, with explicit quantifiers.

I Every number is divisible by 1.

∀n ∈ N
[
1 | n

]

I There are five different powers n where the equation 2n − 7 = a2

has a solution.

∃n0, . . . , n4 ∈ N
[
(n0 6= n1)∧ (n0 6= n2)∧ · · ·∧ (n3 6= n4)

∧ ∃a0 ∈ N(2n0 − 7 = a20)∧ · · ·∧ ∃a4 ∈ N(2n4 − 7 = a24)
]

I Any two integers have a common multiple.

∀n0, n1 ∈ N ∃m ∈ N
[
(n0 | m)∧ (n1 | m)

]
I The function f : R→ R is continuous at a ∈ R.

∀ε > 0 ∃δ > 0 ∀x ∈ R
[
(|x− a| < δ)→ (|f(x) − f(a)| < ε)

]
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The negation of a ‘∀’ statement is a ‘∃¬’ statement. For instance,
the negation of ‘every raven is black’ is ‘there is a raven that is not
black’.

A mathematical example is that the negation of ‘every odd number
is a perfect square’

∀n ∈ N
[
Odd(n)→ Square(n)

]
is

∃n ∈ N¬
[
Odd(n)→ Square(n)

]
which is equivalent to this.

∃n ∈ N
[
Odd(n)∧ ¬Square(n)

]
Thus a person could show that ‘every odd number is a perfect square’
is false by finding a number that is both odd and not a square.

Simililarly the negation of a ‘∃’ statement is a ‘∀¬’ statement.
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