Structured Systems Analysis & Design UNISA studies – Chap 1

Any ramblings and blog posts associated with the UNISA ICT 2621 tag should be considered study notes for my lectures...
Objectives of Chapter 1
· Explain the key role of a system analyst in business.
· Describe the various types of system and technology an analyst might use.
· Explain the importance of technical skills, people skills and business skills for an analyst.
· Explain why ethical behaviour is crucial for a system analyst’s career.
· Describe various job titles in the field and places of employment where analysis and design work is done.
· Discuss the analyst's role in strategic planning for an organization.
· Describe the analyst’s role in systems development projects.
Let me just say before I go into these notes that I find subjects like these extremely amusing & frustrating because of the disparity between the theoretical and the actual implementations in the “working world”. That being said, passing this course is a requirement for my degree.
Key Words & Definitions for the Chapter
· System Analysis – the process of understanding and specifying in detail what the information system should accomplish
· System Design – the process of specifying in detail how the many components of the information system should be physically implemented.
· System Analyst – a business professional who uses analysis and design techniques to solve business problems using information system.
· Information System – a collection of interrelated components that collect, process, store, and provide as output the information needed to complete the business tasks.
· System – a collection of interrelated components that function together to achieve some outcome.
· Subsystem – a system that is part of a larger system.
· Functional Decomposition – dividing a system into components based on subsystems that are further divided into smaller subsystems.
· System Boundary – the separation between a system and its environment that inputs and outputs must cross.
· Automation Boundary – the separation between the automated part of a system and the manual part of a system.
(Different Systems)
· CRM (Customer Relationship Management) – a system that supports marketing, sales, and service operations involving direct and indirect customer interaction.
· SCM (Supply Chain Management) – a system that seamlessly integrates product development, product acquisition, manufacturing, and inventory management.
· AFM (Accounting & Financial Management) – a system that records accounting information needed to produce financial statements and other reports used by investors and creditors.
· HRM (Human Resource Management) – a system that supports employee-related tasks such as payroll, benefits, hiring, and training.
· Manufacturing Management System – a system that controls internal production processes that turn raw materials into finished goods.
· Knowledge Management System – a system that supports the storage of and access to documents from all parts of the organization.
· Collaboration Support System – a system that enabled geographically distributed personnel to collaborate on projects and tasks.
· Business Intelligence System – a system that supports strategic planning and executive decision making.
· ERP (Enterprise Resource Planning) – a process in which an organization commits to using an integrated set of software packages for key information systems.

· Database – a centrally managed collection of data that is accessible to many users and systems at the same time.
· Tools – software products used to help develop analysis and design specifications and completed system components.
· Techniques – strategies for completing specific system development activities.
· Soft Skills – skills in nontechnical areas such as interviewing, team management, and leadership.
· Hard Skills – skills in technical areas such as database design, programming, and telecommunications.

· Strategic Planning – a process during which executives try to answer questions about the company, such as where the business is now, where they want to be, and what they have to do to get there.
· Information Systems Strategic Planning – the plan during the technology and applications that the information systems function needs to support the organization’s strategic plan.
· Business Process Reengineering – a technique that seeks to alter the nature of the work done in a business function, with the objective of radically improving performance.
· Application Architecture Plan - a description of the integrated information systems that the organization needs to carry out its business functions.
· Technology Architecture Plan – a description of the hardware, software, and communications networks required to implement planned information systems.
The Analyst as a Business Problem Solver
System analysis and design focuses on understanding the business problem and underlining the approach to be taken to solve it.
The challenge of the analyst is to select the best solution with the fewest risks and most benefits.
A system analyst can best be described as someone who uses information technology to solve business problems.
A typical decision process followed is outlined below…
[image: Untitled]
Systems that Solve Business Problems
One can divide a system into many subsystems, which in return can be further divided into subsystems. This approach of dividing a system into components is referred to as functional decomposition.
Every system has a boundary between it and its environment. Any inputs and outputs must cross the system boundary.
In my experience it has been at the system boundary where the most challenges occur in system development
The automation boundary is the boundary between automated systems and humans. On one side of the boundary are the humans, on the other side are the other systems.
Required Skills of the Systems Analyst
System analysts require several skills including…
· Understanding how to build information systems (Technical Knowledge / Technical Skills)
· Understanding the business (Business Knowledge / Business Skills)
· Understanding people (People Knowledge / People Skills)
A system analyst should understand the fundamentals of the following technical skills
· Computers and how they work
· File, database, and storage hardware and software
· Input and output hardware and software
· Computer networks & protocols
· Programming languages, operating systems, and utilities
· Communication and collaboration technology such as digital telephones, video conferencing and web based document management systems.
A system analyst needs to know a lot about tools & techniques for developing systems including…
· Software packages such as Intuit Quickbooks (Accounting), Microsoft Access (DB), and Adobe Dreamweaver (Design),
· Integrated Development IDE’s such as Oracle JDeveloper and Microsoft Visual Studio.
· Computer-aided visual modeling tools such as Rational XDE Modeler, Visible Analyst & Embarcadero Describe
· Automated testing tools, configuration management tools, software library management tools, etc.
Techniques are strategies for completing specific system development activities. some examples of techniques include…
· Project planning techniques
· Cost/benefit analysis techniques
· Interviewing techniques
· Requirements modeling techniques
· Architectural design techniques
· Network configuration techniques
· Database design techniques
The analyst will also need to have business knowledge & business skills. Some examples of this include…
· What business functions do organizations perform
· How are organizations managed
· What type of work goes on in organizations
The more an analyst knows about how an organization works, the more effective he can be
Analysis Related Careers
There are many career opportunities, a few that were mentioned in the book include…
· Sales & support of ERP Software
· Business analysts for user organizations
· Auditing, compliance, and security
· Web development
There are many job titles that might describe an analyst, a few that were mentioned in the book include…
· Programmer analyst
· Business systems analyst
· System liaison
· End-user analyst
· Business consultant
· Systems consultant
· Systems support analyst
· Systems designer
· Software engineer
· System architect
· Web architect
· Webmaster
· Web developer
The Analysts Role in Strategic Planning
An analyst is usually involved in strategic planning. They can be called to assist in special projects with executives or to help implement the application architecture plan. In an ideal world, a comprehensive information system planning project would solve all of the problems that information systems managers face, however because the world is continually changing, plans are continually being changed and evaluated.
The Analyst as a System Developer
In this chapter we covered many different aspects of a system analyst, however…
The main job of an analyst is working on specific information systems development projects. The remaining texts of the book will cover the following…
· Part 1 – The System Analyst
· Part 2 – System Analysis Tasks
· Part 3 – System Design Tasks
· Part 4 – Implementation and Support

Structured Systems Analysis & Design UNISA studies – Chap 2

Any ramblings and blog posts associated with the UNISA ICT 2621 tag should be considered study notes for my lectures...
Objectives of Chapter 2
· Explain the purpose and various phases of the traditional systems development life cycle (SDLC)
· Explain when to use an adaptive approach to the SDLC in place of the more predictive traditional SDLC
· Explain the differences between a model, a tool, a technique, and a methodology
· Describe the two overall approaches used to develop information systems: the traditional approach and the object orientated approach
· Describe the key features of current trends in system development: the Unified Process (UP), Extreme Programming (XP), and Scrum
· Explain how automated tools are used in system development
Key Words & Definitions
· project – a planned undertaking that has a beginning and an end and that produces a desired result or product
· systems development life cycle (SDLC) – the entire process of building, deploying, using, and updating an information system
· predictive approach – an SDLC approach that assumes the development project can be planned and organized in advance and that the new information system can be developed according to plan
· adaptive approach – an SDLC approach that is more flexible, assuming that the project cannot be planned out completely in advance but must be modified as it progresses
· phases – related system development activities which are grouped into categories of project planning, analysis, design, implementation, and support
· waterfall model – a SDLC approach that assumes the various phases of a project can be completed sequentially – one phase leads into the next phase
· spiral model – an adaptive SDLC approach that cycles over and over again through development activities until a project is complete
· prototype – a preliminary working model showing some aspect of a larger system
· iteration – system development process in which work activities – analysis, design, implementation – are done once, then again, and yet again on different system components they are repeated until the system is closer to what is ultimately needed.
· incremental development – a development approach that completes parts of a system in several iterations and then puts them into operation for users
· project planning – the initial activities of the SDLC, whose objective is to identify the scope of the new system and plan the project
· analysis activities – the activities of the SDLC whose objective is to understand the user needs and develop requirements
· problem domain – the area of the user’s business for which a system is being developed
· design activities –the activities of the SDLC during which the system and programs are designed
· application – the portion of the new information system that satisfies the user’s needs in the problem domain
· implementation activities – the activities of the SDLC during which the new system is programmed and installed
· support activities – the activities of the SDLC whose objective is to keep the system running productively after it is installed
· help desk – the availability of support staff to assist users with any technical or processing problem associated with an information system
· system development methodology – comprehensive guidelines to follow for completing every activity in the systems development life cycle, including specific models, tools, and techniques

· model – a representation of an important aspect of the real world
· tool – software support that helps create models or other components required in the project
· technique – a collection of guidelines that help an analyst complete a system development activity or task

· integrated development environment (IDE) – tools that help programmers with a variety of programming tasks
· visual modelling tools – tools that help the analyst create and verify important system models, often generating program code
· structured approach – system development using structured analysis, structured design, and structured programming techniques
· structured program – a program or program module that has one beginning and one ending, and for which each step in the program execution consists of sequence, decision , or repetition constructs
· top-down programming – dividing more complex programs into a hierarchy of program modules
· structured design – a technique providing guidelines for deciding what the set of programs should be, what each program should accomplish, and how the programs should be organized into a hierarchy
· structure chart – a graphical model showing the hierarchy of program modules produced by the structured design technique
· structured analysis – a technique used to define what processing the system needs to do, what data it needs to store and use, and what inputs and outputs are needed
· data flow diagram (DFD) – a structured analysis model showing the inputs, processes, storage, and outputs of a system
· entity relationship diagram (ERD) – a structured analysis and information engineering model of the data needed by a system
· information engineering – a traditional system development methodology thought to be more rigorous and complete than the structured approach, because of its focus on strategic planning, data modelling, and automated tools

· object-oriented approach – an approach to system development that views an information system as a collection of interacting objects that work together to accomplish tasks
· object – a thing in the computer system that can respond to messages
· object-orientated analysis (OOA) – defining all of the types of objects that do the work in the system and showing what use cases are required to complete tasks
· class diagram – a graphical model used the object orientated approach to show classes of objects in the system
· Unified Process (UP) – an object oriented system development methodology offered by IBM’s Rational Software
· repository – a database that stores information about the system in a visual modelling tool, including models, descriptions, and references that link the various models together.
The System Development Life Cycle
(See wiki for a more detailed explanation)
The entire process of building, deploying, using, & updating an information system is called the systems development life cycle. A SDLC may vary in size and the time, and can be just a few days to several years depending on its scope.
In today’s diverse development environment there are many different approaches to developing systems, and each is based on a different SDLC’s.
Although it is difficult to find a single, comprehensive classification system that encompasses all of the approaches, one useful technique is to categorize SDLC approaches according to whether they are more predictive or adaptive.
A predictive approach is one which assumes that the new system can be developed according to plan. This approach is useful if the system is well understood and defined. When applying a predictive approach very few changes are done to the system once the final plan is approved.
A adaptive approach is one where the exact requirements of a system or the user’s needs are not well understood. In this situation, the project cannot be planned completely in advance, but the system can still be built and as the needs are better defined modifications to the system are done.
Predictive approaches are considered more traditional and were used extensively in the 80’s and 90’s. Many newer adaptive approaches have been adopted since the 90’s and are currently used.
It is important to recognize that any project will have a mix of both the predictive and adaptive elements.
The Traditional Predictive approaches to the SDLC
There are five main phases to the predictive approach:
1. Planning – Identify scope, ensure feasibility, develop schedule, resource plan & budget
2. Analysis – Understand & document in details business needs and processing requirements
3. Design – Design solution based on the requirements
4. Implementation – Build, Test & Install
5. Support – Keep system running
The most predictive approach is called the pure waterfall model as it assumes that the various phases of a project can be carried out and completed sequentially. Once a phase is completed, you cannot go back to it (like going over a waterfall). In practice the pure waterfall approach is not very effective as there are always areas that need further development.
There is a modified waterfall model that is more adaptive/predictive. Using this model basically you are saying that there are set phases, but that there may be overlap between them. A benefit of the modified model is efficiency as it allows team members to start phases or do pre-phases without having completed the previous phases. i.e. you may want to design a section of the system while planning because there is sufficient clarity initially.
The Newer Adaptive Approaches to the SDLC
The adaptive approach means a development approach in which project activities – including plans & models – are adjusted as the project progresses. One popular technique is called the spiral model.
The spiral model is considered the first adaptive approach to system development. For more info on it refer to the wiki entry here…
A key concept of the spiral model is the focus on risk, basically you identify the greatest risks first and address these in your first iteration. This may require producing a POC to prove the technology is viable etc.
Iteration means that work activities – analysis, design, implementation – are done once. A project may have many iterations depending on its complexity.
With most of the adaptive approaches the emphasis is on tackling the toughest problems first that have the highest risk ranking, then fine tuning the system to accommodate the entire problem scope.
Activities of Each SDLC Phase
There are several sections of the SDLC Phase, which include…
· Project Planning – identify the scope of the system, ensure feasibility & develop a schedule & resource plan
· Analysis Activities – understand & document the business needs & processing requirements of the system (discovery & understanding)
· Design Activities – design solution based on requirements
· Implementation Activities – result in final system being built.
· Support Activities – keep the system running productively during the time following the initial installation.
Project Planning
Nothing to important here – read the summary above.
Analysis Activities
6 primary activities are considered as part of this phase…
1. Gather Information – learn about the problem domain
2. Define System Requirements
3. Build prototypes for discovery requirements
4. Prioritize requirements
5. Generate & evaluate alternatives
6. Review recommendations with management
Design Activities
7 major activities must be completed during this phase…
1. Design & integrate the network
2. Design the application architecture
3. Design the user interfaces
4. Design the system interfaces
5. Design and integrate the database
6. Prototype for design details
7. Design and integrate the system controls
Design activities are closely interrelated and generally are done with substantial overlap.
Implementation Activities
5 major activities must be completed during this phase…
1. Construct software components
2. Verify and test
3. Convert data
4. Train users and document the system
5. Install the system
Support Activities
3 major activities occur during this phase…
1. Maintain the system
2. Enhance the system
3. Support the users
Methodologies, Models, Tools & Techniques
Methodologies
A system development methodology provides guidelines to follow for completing every activity in the SDLC, including specific models, tools, and techniques.
Because methodology contains instructions about how to use models, tools, and techniques, one must understand what these are…
Models
A model is a representation of an important aspect of the real world. It is sometimes called an abstraction as it is used to separate out and aspect of particular importance.
There are many different models that are used in the SDLC, including planning models such as Gantt charts, or implementation models such UML diagrams.
Some models of system components include….
· Flowchart
· Data flow diagram
· Entity relationship diagram
· Structure chart
· Use case diagram
· Class diagram
· Sequence diagram
Some models used to manage the development process include…
· Gantt chart
· Organizational Hierarchy chart
· Financial Analysis Model
Tools
A tool in software development is software support that helps create models or other components required in the project.
They can include really anything, but a few examples would be…
· Drawing Programs for Diagrams
· Database Applications to store information
· IDE for programming
· Microsoft project for planning
Techniques
A technique in system development is a collection of guidelines that help an analyst complete a system development activity or task.
Some examples include…
· Data-modelling techniques
· Software-testing techniques
· User-interviewing techniques
· Relational-database design techniques
A methodology includes a collection of techniques that are used to complete activities within each phase of system development.
Two Approaches to System Development
There are several approaches to system development and in the real world actual implementations of approaches vary from company to company however in this book they have divided it into two groups, the traditional approach and the object orientated approach…
The Traditional Approach
The traditional includes many variations based on techniques used to develop information systems with structured and modular programming. The approach is often referred to as the structured system development approach, but has also been refined (which is called the information engineering approach).
There are three techniques that make up the Structured System Development approach. They are…
1. Structured Analysis
2. Structured Design
3. Structured Programming
These three techniques are often referred to collectively as the Structured Analysis & Design Technique (SADT).
Structured Analysis (Modern) is the technique of defining system requirements. This approach requires one to define…
· What the system needs to do
· What data the system needs to store & use
· what input & outputs are needed
· How the functions work together as a whole
Initially this was done using DFD (Data Flow Diagrams), which shows the inputs, storage, outputs & processing.
Another diagram called the ERD (Entity Relationship Diagram) which is a database modelling method used to produce a type of conceptual scheme of a system.
Structured Design is the technique developed for providing some guidelines for deciding what the set of programs should be in a system, what each program should accomplish, and how the programs should be organized.
The modules and arrangement of the modules can be shown graphically using a structure chart.
There are two main principles of structured design which are…
1. Loosely coupled
2. Highly cohesive
Structured Programming is the technique of creating high quality programs that generate the correct outputs and are easy for other programmers to read. A structured program is one that has one beginning and one ending and each step in the program execution consists of one of three programming constructs
1. A sequence of program statements
2. A decision where one set of statements or another set of statements executes
3. A repetition of a set of statements
Another concept related to structured programming is Top-down programming where one module controls sub modules, and those sub modules each have sub-sub modules etc.
Some Weaknesses of the Structured Approach
· Address some but not all of the activities of analysis & design
· Makes processes rather than data the central focus
Information Engineering
Information engineering is a refinement to structured development that begins with overall strategic planning to define all of the information systems that an organization needs to conduct its business.
The information engineering approach refines many of the concepts of structured approach into rigorous and comprehensive methodology, thus the book will refer to both these approaches as the traditional approach.
The Object Oriented Approach
The object oriented approach views systems as a collection of interacting objects that work together to accomplish tasks.
An object is a thing in the computer system that is capable of responding to messages.
The object oriented approach covers three main areas…
· Object oriented analysis – defines all of the types of objects that do the work in a system
· Object oriented design – defines all of the additional types of objects necessary to communicate with various things, refines definitions of each objects so that it can be implemented in a programming language.
· Object oriented programming – consists of writing statements in a programming language to define what each type of object will do.
A classification or “class” represents a collection of similar objects in a system.
Classes can be represented using class diagrams.
The object orientated approach has several benefits including…
· It seems natural in many scenarios to specify things as objects
· It allows for reuse of objects in other systems
Current Trends in Development
There are always new approaches coming out on the market. Some examples of these include…
· The Unified Process
· Extreme Programming
· Scrum
I will not cover these topics from the book, but it may be worth checking out their definitions in wiki.
Tools to Support System Development
There are many tools that support system development that help automate the process.
Examples of these tools include…
· Microsoft Visio (for diagram modelling)
· IBM’s rational software
·

Structured System Analysis & Design UNISA Studies – Chap 4

Any ramblings and blog posts associated with the UNISA ICT 2621 tag should be considered study notes for my lectures...
Objectives of Chapter 4
· Describe the activities of system analysis.
· Explain the difference between functional and non-functional system requirements.
· Describe three types of models and reasons for creating models
· Identify and understand the different types of users who will be involved in investigating system requirements
· Determine the kind of information that is required to model system requirements
· Determine system requirements through review of documentation, interviews, observation, prototypes, questionnaires, joint application design sessions, and vendor research.
· Discuss the need for validation of system requirements to ensure accuracy and completeness and the use of a structured walkthrough.
Key Words & Definitions
· logical model – any model that shows what the system is required to do without committing to any one technology
· physical model – any model that shows how the system will be actually implemented
· system requirements – specifications that define the functions to be provided by a system
· functional requirements – a system requirement that describes an activity or process that the system must perform
· non-functional requirement – characteristics of the system other than activities it must perform or support, such as technology, performance, usability, reliability, and security
· technical requirement – a system requirement that describes an operational characteristic related to an organization’s environment, hardware, and software
· performance requirement – a system requirement that describes an operational characteristic related to workload measures, such as throughput and response time.
· usability requirement – a system requirement that describes an operational characteristic related to users, such as the user interface, work procedures, online help, and documentation.
· reliability requirement – a system requirement that describes the dependability of a system, such as how it handles service outages, incorrect processing, and error detection and recovery.
· security requirement – a system requirement that describes user access to certain functions and the conditions under which access is granted.
· Mathematical model - a series of formulas that describe technical aspects of a system.
· Descriptive model – narrative memos, reports, or lists that describe some aspect of a system.
· Graphical model – diagrams and schematic representations of some aspect of a system.
· Stakeholders – all the people who have an interest in the success of a new system.
· Transaction – a single occurrence of a piece of work or an activity done in an organization.
· workflow – a sequence of steps to process a business transaction.
· activity diagram – a type of workflow that describes the user activities and their sequential flow.
· synchronization bar – a symbol in an activity diagram to control splitting or uniting of sequential paths.
· swimlane – a rectangular area on an activity diagram representing the activities of a single agent.
· prototype – a preliminary working model of a larger system.
· mock-up – an example of a final product that is for viewing only and is not executable
· closed-ended questions – questions that have a simple, definitive answer.
· open-ended questions – questions that require discussion and do not necessarily have a simple, short answer.
· joint application design (JAD) – a technique to define requirements or design a system in a single session by having all necessary people participate.
· group support system (GSS) – a computer system that enables multiple people to participate with comments at the same time, each from their own computer.
· structured walkthrough – a review of the findings from your investigation and of the models built based on those findings.
Analysis Activities in More Detail
There are six activities that need to be covered in analysis. They are…
1. Gather Information
2. Define System Requirements
3. Prioritize Requirements
4. Prototype for Feasibility & Discovery
5. Generate and Evaluate Alternatives
6. Review Recommendations with management
Keep in mind that these six activities are usually done almost simultaneously. For instance, one might be defining system requirements while gathering information, etc.
Here are the top key questions the book outlines for each activity…
	Analysis Activity
	Key Questions

	Gather Information
	Do we have all of the information (and insight) we need to define what the system must do?

	Define System Requirements
	What (in detail) do we need the system to do?

	Prioritize Requirements
	What are the most important things the system must do?

	Prototype for Feasibility & Discovery
	Have we proven that the technology proposed can do what we think we need it to do?
Have we built some prototypes to ensure the users fully understand the potential of what the new system can do?

	Generate & Evaluate Alternatives
	What is the best way to create the system?

	Review Recommendations with Management
	Should we continue with the design and implement the system we propose?

Functional and Non-functional System Requirements
System requirements are all the capabilities and constraints that the new system must meet.
The system requirements are typically divided into functional and non functional requirements.
Functional requirements
· Functional requirements are the activities that the system must perform.
· They are what the business intends on using the system for.
· They are based on the procedures and rules that the organization uses.
See wiki for more info on functional requirements.
Non-functional requirements
· Non-functional requirements are characteristics of the system other than activities it must perform or support. There are many different types of non-functional requirements. Some examples of the include:
· technical requirement
· performance requirement
· usability requirement
· reliability requirement
· security requirement
Have a look at the key definitions at the top of the blog for an explanation of the above requirements.
See wiki for more info on non-functional requirements.
Models and Modelling
The Purpose of Models
Models help discover how a system should work… the following are the major reasons why models are used for system development.
· Learning from the modelling process
· Reducing complexity by abstraction
· Remembering all of the details
· Communicating with other development team members
· Communicating with a variety of users and stakeholders
· Documenting what was done for future maintenance/enhancement
Types of Model
There are three main types of models.
1. Mathematical Models
2. Descriptive Models
3. Graphical Models
Mathematical Models
· A series of formula to describe technical aspects of a system
· Usually models technical requirements
Descriptive Models
· Narrative memos, reports, or lists
· Sometimes descriptive models are converted to graphical models for better visualization
· A form of descriptive modelling is pseudo code – or structured English to describe an algorithm
Graphical Models
· Probably the most useful type of model
· Includes diagrams and schematic representations of some aspect of the system
· UML is an example of a graphical model.
Stakeholder – The Source of System Requirements
Stakeholders are all the people who have an interest in the successful implementation of the system. They can generally be categorized into one of three groups.
1. Users – people who actually use the system
2. Clients – people who pay for the system
3. Technical Staff – people who support the system
User Stakeholders
Examples of users include…
· Business Users – people who capture data – i.e. generate an order
· Information Users – people who view data but cannot change it – i.e. someone viewing the progress of an order
· Management Users – people who monitor the performance of the business and need dashboards etc.
· Executive Users – people who are concerned with the overall aspect of the business/system
· External Users – for example, customers who order from home online
Client Stakeholders
· Client stakeholders are the people paying/funding the development of the system
· Sometimes the client stakeholder is also the executive user, however sometimes it is a third party group that funds the project.
Technical Stakeholders
· The people who maintain the system.
· Sometimes a technical stakeholder will form part of the development system.
Techniques for Information Gathering
Development of system requirements was initially a four step process…
1. Identify the physical processes and activities of the existing system
2. Extract the logical business function that was inherit in each existing physical process
3. Develop the logical business functions for the approach to be used in the new system
4. Define the physical processing requirements of the new system
A major disadvantage of this approach was the time it took to complete.
Also, often system analysts would simply automate the existing procedures without any innovation.
Avoid “analysis paralysis: by focussing on the new system requirements from the beginning.
Now days, analysis focuses on certain themes and uses various techniques to develop the logical model of the system. This is done by focussing on question themes.
Question Themes
· What are the Business Processes?
· How is the Business Process Performed?
· What Information is Required?
The processes to answer the above questions can usually be achieved by doing the following…
· Reviewing existing reports, forms & procedure descriptions
· Conduct Interview & Discussion with Users
· Observing and documenting business processes
· Building prototypes
· Distributing & collecting questionnaires
· Conducting Joint Application Design Sessions (JAD)
· Research Vendor Solutions
Reviewing existing reports, forms & procedure descriptions
· Study best practices in Industry Journals
· Study existing reports & forms used in the organization and understand the data that is being captured and why it is important.
Conduct Interview & Discussion with Users
Try and have at least two team members attend interviews so that they can verify their results
Things to do before the interview
· Establish the objective for the interview
· Determine correct user’s to be involved
· Determine project team members to participate
· Build a list of questions and issues to be discussed
· Review related documents and materials
· Set time & location
· Inform all participants of objective, time & locations
Things to do during the interview
· Dress appropriately
· Arrive on time
· Look for exception and error conditions
· Probe for details
· Take thorough notes
· Identify and document unanswered items or open questions
Things to do after the interview
· Review notes for accuracy, completeness and understanding
· Transfer information to appropriate models and documents
· Identify areas needing further clarification
· Send thank-you notes if appropriate
Maintain an open-items list for unresolved problems and questions that came up in the interviews
Observing and Documenting Business Processes
· Observe business processes in action
· Document Workflows with Activity Diagrams
Building Prototypes
There are many different names for prototypes including…
· thowaway prototype
· discovery prototype – used for a single discovery objective and then discarded after the concept has been tested.
· design prototype
· evolving prototype – are prototypes that grow and change and may eventually even be used as the final, live system
Effective prototypes usually have the following attributes.
· Operative – should be a working model and display look & feel
· Focussed – should test a specific concept and focussed on its objective
· Quick – Should not take to long to develop
Distributing & Collecting Questionnaires
· Questionnaires include closed & open ended questions.
· Limit the number of open ended questions (rather use them in interviews)
Conducting Joint Application Development
See wiki for more info on JAD.
The following people & groups may be involved in a JAD session…
· JAD Session Leader
· Users
· Technical Staff
· Project Team Members
One of the dangers of JAD is the risk involved in expediting decisions because the objective of a JAD session is to come to a conclusion quickly on policy decisions & requirements, sometimes decisions are not optimal however JAD sessions have been largely successful in reducing project development efforts & shortening the schedule.
Research Vendor Solutions
· There may already be a solution on the market that solves the existing problem
· The danger is that an off the shelf solution may not solve all of the problems so proper investigation is necessary
Try and get the following about a product before buying a solution
· Technical Specifications
· Demo or Trial of the System
· References of Existing Clients who use the system
· An on-site visit
· Printout of screens & reports

Structured System Analysis & Design UNISA Studies – Chap 5

Any ramblings and blog posts associated with the UNISA ICT 2621 tag should be considered study notes for my lectures...
Please note this chapter is also covered in ICT2622 – Object Orientated Analysis
Objectives of Chapter 5
· Understand why identifying use cases is the key to defining functional requirements
· Use three techniques for identifying use cases
· Write brief, intermediate, and fully developed use case descriptions
· Explain how the concept of things in the problem domain also define requirements
· Identify and analyze data entities and domain cases needed in the system
· Read, interpret, and create an entity-relationship diagram
· Read, interpret, and create a domain model class diagram
Key Word & Definitions
· use case – an activity the system performs
· user goal technique – an approach for identifying use cases in which an analyst talks to all users to get them to describe their goals in using the system
· CRUD techniques – an approach in which an analyst looks at each type of data and includes use cases that create the data, read or report on the data, update the data, and delete the data.
· elementary business process (EBP) – a task that is performed by one person, in one place, in response to a business event; it adds measurable business value and leaves the system and its data in a consistent state.
· event – an occurrence at a specific time and place that can be described and is worth remembering
· event decomposition – an analysis technique that focuses on identifying the events to which a system must respond and then determining how the system must respond.
· external event – an event that occurs outside the system, usually by an external agent or actor.
· temporal event – an event that occurs as a result of reaching a point in time.
· state event – an event that occurs when something happens inside the system that triggers the need for processing
· system controls – check or safety procedures put in place to protect the integrity of the system
· perfect technology assumption – the assumption that events should be included during analysis only if the system would be required to respond under perfect conditions.
· event table – a catalogue of use cases that lists events in rows and key pieces of information about each event in columns.
· trigger – a signal that tells the system that an event has occurred, either the arrival of data needing processing or a point in time.
· source – an external agent or actor that supplies data to the system
· response – an output, produced by the system, that goes to a destination
· destination – an external agent or actor that receives data from the system
· use case description – a description that lists the processing details for a use case
· actor – in UML diagrams, a person who uses the system
· scenario or use case instance – a unique set of internal activities within use case that represents a unique path through the use case
· preconditions – conditions that must be true before a use case begins
· post conditions – conditions that must be true upon completion of the use case
· relationship – a naturally occurring association among specific things, such as “an order is placed by a customer and an employee works in a department”
· cardinality – the number of associations that occur among specific things, such as a customer places many orders and an employee works in one department.
· multiplicity – a synonym for cardinality
· binary relationships – relationships between two different types of things such as a customer and an order
· unary relationships - a relationship among two things of the same type, such as one person being married to another person
· ternary relationship – a relationship among three different types of things
· n-ary relationship – a relationship among n different types of things
· attribute – one piece of specific information about a thing
· identifier (key) – an attribute that uniquely identifies a thing
· compound attribute – an attribute that contains a collection of related attributes
· data entities – the things about which the system needs to store information in the traditional approach to information systems
· associative entity – a data entity that represents a many-to-many relationship between two other data entities
· generalization / specialization hierarchies – hierarchies that structure or rank classes from the more general super class to the more specialized subclasses; sometimes called inheritance hierarchies.
· inheritance – a concept that allows subclasses to share characteristics of their super classes
· whole-part hierarchies – hierarchies that structure classes according to their associated components
· aggregation – whole-part relationship between an object and its parts
· composition – whole-part relationship in which the parts cannot be dissociated from the object
User Goals, Events, & Use Cases
(See Wiki on Use Cases for more info)
Use cases are used in almost all modern system analysis approaches. A use case is an activity the system performs, usually in response to a request by a user.
Several techniques are recommended for identifying use cases including…
· User Goal Technique - This is an approach for identifying use cases in which an analyst talks to all users to get them to describe their goals in using the system.
· CRUD Technique – This an approach in which an analyst looks at each type of data and includes use cases that create the data, read or report on the data, update the data, and delete the data
· Event Decomposition Technique – This is the most comprehensive technique for identifying use cases and focuses on identifying the events to which a system must respond and then determining how the system must respond.
It is important with use cases to identify the appropriate level of detail, you do not want to be to broad, or to narrow. One way to do this is to define the EBP (Elementary Business Process). Basically, an EBP is a process where no major time gap occurs during the process – i.e. it may seem seamless.
Event Decomposition Technique
· identify the events to which a system must respond
· determine how the system must respond
· focus on events
Types of Events
There are three main types of events in a system…
1. External Event – an event that occurs outside the system, usually by an external agent or actor.
2. Temporal Event – an event that occurs as a result of reaching a point in time (time based event)
3. State Event – an event that occurs when something happens inside the system that triggers the need for processing
Identifying Events
It is not always easy to define the events that affect a system. The following need to be taken into consideration.
· Events vs. Prior Conditions & Response – is this actually an event or part of a prior condition? Try and use the EBP principle.
· The Sequence of Events : Tracing a Transactions Life Cycle – sometimes useful to trace all events that will occur with an actor.
· Technology Dependent Events & System Controls – assume the “perfect technology assumption”. These events should not form part of the initial use cases as they are technology dependant – i.e. logging in to a system, etc.
Event Table
An event table is a catalogue of use cases that lists events in rows and key pieces of information about each event in columns.
An event table includes row and columns representing events and their details, respectively. An example of an event table is shown below…
	Event
	Trigger
	Source
	Use Case
	Response
	Destination

	Customer wants to check item availability
	Item Inquiry
	Customer
	Look up item availability
	Item Availability Details
	Customer

Use an event table as a catalogue of information about the use cases that make up the functional requirements of the system
Each column in the event table represent a section…
· trigger – a signal that tells the system that an event has occurred, either the arrival of data needing processing or a point in time.
· source – an external agent or actor that supplies data to the system
· response – an output, produced by the system, that goes to a destination
· destination – an external agent or actor that receives data from the system
Use Case Descriptions
A list of use cases and an event table provide an overview of all the use cases for a system. Detailed information about each use case is described with a use case description.
In UML, an actor is a person. An actor is always outside the automation boundary of the system but may be part of the manual portion of the system.
There are three levels of use case descriptions…
1. Brief Description
2. Intermediate Description
3. Fully Developed Description
Brief Description
· Used for very simple use cases
· Usually it is changed to a intermediate description or a fully developed description
Intermediate Description
Below is an example of a template layout for a intermediate description…
	Title of the Use Case

	Main Flow
· Step by Step descriptions of the flow

	Exception Conditions

	

Fully Developed Description
· The most formal description
· Example of description listed below…
	Use Case Name
	

	Scenario
	

	Triggering Event
	

	Brief Description
	

	Actors
	

	Related Use Cases
	

	Preconditions
	

	Post conditions
	

	Flow of Activities
		Actor
	System

	
	

	Exception Conditions
	

	
	

Preconditions and post conditions are critical to understanding the processing done for a use case.
“Things” in the Problem Domain
In the traditional approach, the “things” make up the data that is stored. The type of data that is stored is key to the system requirements.
In the object orientated approach, the “things” make up the objects that are mapped.
Whether you use the traditional or object oriented approach, identifying the “things” is a key initial step.
Types of Things
An analyst can identify the types of things by thinking about each event in the event table and asking questions.
There are several procedures that can assist an analyst in this process. Outlined below is one such procedure…
1. Use the event table and information about each event and identify all of the nouns.
2. Using other information from existing systems, current procedures, and current reports or forms, add items or categories of information needed
3. Refine the list and record assumptions or issues to explore.
Relationships Among Things
Once you have identified the “things”, you should identify the relationship between them.
A relationship is a naturally occurring association among specific things, such as “an order is placed by a customer and an employee works in a department”.
It is important to note that relationships between things apply in two directions – i.e. a customer orders a products, products have been ordered by a specific customer.
It is important to also understand the cardinality that exists between objects. Cardinality is the number of associations that occur among specific things, such as a customer places many orders and an employee works in one department. Sometimes this can be called multiplicity. (see wiki for more on cardinality)
It is important not just to understand the cardinality, but also the range of possible values. i.e. A particular customer might not ever place an order, but if he wanted to he could place many orders. (range is the minimum and maximum cardinality).
There are several different types of relationships… outlined below are some of the major ones…
 binary relationships – relationships between two different types of things such as a customer and an order
 unary relationships - a relationship among two things of the same type, such as one person being married to another person
 ternary relationship – a relationship among three different types of things
 n-ary relationship – a relationship among n different types of things

Initially focus on identifying each “thing” in the problem domain, but also be sure to focus on associations/relationships among them, which are often just as important to the system users.
Attributes of Things
An attribute is one piece of specific information about a thing. In .Net we usually call these properties of objects. i.e. the Name of a Person would be an attribute.
Some attributes are key identifiers which means that the attribute uniquely identifies the “thing”.
You can also get compound attributes – which is an attribute that contains a collection of related attributes – i.e. Full Name is a compound attribute of First Name & Last Name.
The Entity-Relationship Diagram
Data entities are the things about which the system needs to store information in the traditional approach to information systems. The model used to define the data storage requirements with the traditional approach is called the entity-relationship diagram (ERD).
(For more information on ERD diagrams see the wiki)
An important aspect of an entity diagram is an associative entity which is a data entity that represents a many-to-many relationship between two other data entities.
Several refinements are done to ERD during the design process. One such refinement is called normalization (see wiki for more info).
The Domain Model Class Diagram
The domain model class diagram (See wiki for more info) is a type of UML class diagram shows the things in the users work domain.
The book covers the notation for this type of UML diagram however the summary will not go into any depth on this.
The section also covers generalization/specialization of classes.
A generalization / specialization hierarchy is one in which one can structure or rank classes from the more general super class to the more specialized subclasses; sometimes called inheritance hierarchies. i.e. A Vehicle Class can have specialization sub classes of Cars or Trucks.
Another way that people structure information about things is by defining them in terms of their parts. This is called whole-part hierarchies.
Whole-part hierarchies are hierarchies that structure classes according to their associated components.
There are two types of whole part hierarchies…
1. Aggregation
2. Composition
Aggregation is used to describe a form of association that specifies a whole-part relationship between the aggregate (whole) and its components (parts) where the parts can exist separately.
Composition is used to describe a form of association that is even stronger than aggregation, where the parts once associated, can no longer exist separately.
(See Page 191 of the book for graphical examples).
Whole-part hierarchies serve mainly to allow the analyst to express subtle distinctions about associations among classes. As with any association relationship, multiplicity can apply such as when a computer has one or more disk storage devices.
Composition – whole-part relationship in which the parts cannot be dissociated from the object

Structured System Analysis & Design UNISA Studies – Chap 6
Any ramblings and blog posts associated with the UNISA ICT 2621 tag should be considered study notes for my lectures...
Objectives of Chapter 6
· Explain how the traditional approach and the object oriented approach differ when modelling the details of a use case.
· List the components of a traditional system and the symbols representing them on a data flow diagram.
· Describe how data flow diagrams can show the system at various levels of abstraction
· Develop data flow diagrams, data element definitions, data store definitions, and process descriptions
· Develop tables to show the distribution of processing and data access across system locations
Key Word & Definitions
· data flow diagram (DFD) – a diagram that represents system requirements as processes, external agents, data flows, and data stores
· external agent – a person or organization outside the system boundary, that supplies data inputs or accepts data outputs
· process – a symbol on a DFD that represents an algorithm or procedure by which data inputs are transformed into data outputs
· data flow – an arrow on a DFD that represents data movement among processes, data stores, and external agents
· data store – a place where data is held pending future access by one or more processes
· level of abstraction – any modelling technique that break the system into a hierarchical set of increasingly more detailed models
· context diagram – a DFD that summarizes all processing activity within the system in a single process symbol
· DFD fragment – a DFD that represents the system response to one event within a single process symbol
· event-partitioned system model, or diagram 0 – a DFD that models system requirements using a single process for each event in a system or subsystem
· information overload – difficulty in understanding what occurs when a reader receives too much information at one time
· rule of 7+-2 – the rule of model design that limits the number of model components or connections among components to no more than nine
· minimization of interfaces – a principle of model design that seeks simplicity by limiting the number of connections among model components
· balancing – equivalence of data content between data flows entering and leaving a process and data flows entering and leaving a process decomposition DFD
· black hole – a process of data store with a data input that is never used to produce a data output
· miracle – a process or data store with a data element that is created out of nothing
· Structured English – a method of writing process specifications that combines structured programming techniques with narrative English
· decision table – a tabular representation of processing logic containing decision variables, decision variable values, and actions or formulas
· decision tree – a graphical description of process logic that uses lines organized like branches of a tree
· data flow definition – a textual description of a data flow’s content and internal structure
· data dictionary – a repository for definitions of data flows, data elements, and data stores
· location diagram – a diagram or map that identifies all of the processing locations of a system
· activity location matrix – a table that describes the relationship between processes and the locations in which they are performed
Traditional & Object-Oriented Views of Activities/Use Cases
Traditional approach
· views system as a collection of processes
· contains instructions that are typically sequential
· involves processes, stored data, inputs & outputs, processing models
OO Approach
· views system as a collection of interacting objects
· objects are based on things in the problem domain
· objects are capable of behaviours (methods) that allow them to interact with each other
· no conventional computer processes or data files per se
· includes models that show objects, their behaviour, and their interactions with other objects
Data Flow Diagrams
(See wiki for more info)
· Data flow diagram is the most commonly used process model.
· It is a graphical system model that shows all of the main requirements for an information system in one diagram.
· It is easy to read.
There are only five symbols to learn in a DFD
1. external agent (square)
2. process (rectangle with rounded corners)
3. data flows (lines with arrows)
4. real-time link – communication back and forth between external agents.
5. data store (flat open ended rectangle)
[image: TMPDFD]
An example of a basic DFD using these elements is shown below…
[image: TMPDFDEG]
When employing the traditional approach, identify use cases and then model the details of each use case with a data flow diagram fragment
DFD’s & Entity Diagrams
The DFD integrates processing triggered by events with the data entities modelled using the ERD. The picture below summarizes the correspondence among components of the DFD, events described in the event table and the entities defined in the ERD.

[image: 001]
Data Flow Diagrams & Levels of Abstraction
· DFD’s can show either higher level or lower level vies of a system.
· A context diagram is a DFD that describes the most abstract view of a system – it summarizes all processing activity within the system in a single process symbol.
· The topmost DFD is the context diagram.
A context diagram…
· clearly shows the system boundary
· does not usually show data stores because all of the system’s data stores are considered within the system scope.
· usually created in parallel with the event table
External agents that supply or receive data from the system are outside the system scope, everything else is in the system scope and would be represented as one or more processes.
A DFD fragment…
· is a DFD that represents the system response to one event within a single process symbol
· is a self contained model showing how the system respond to a single event
· usually created one at a time
A event-partitioned system model, or diagram 0…
· a DFD that models system requirements using a single process for each event in a system or subsystem
· used primarily as a presentation tool
· summarises an entire system or subsystem in greater detail than the context diagram
· diagram is often complex and unwieldy
Physical & Logical DFDs
A DFD can be a…
1. physical system model,
2. or a logical system model,
3. or a blend of the two.
If a DFD is a logical system model it assumes that the system might be implemented with any technology.
If a DFD is a physical model one or more assumptions about the technology will be embedded in the DFD.
A number of elements indicate assumptions about implementation technology…
· Technology-specific processes
· Actor-specific process names
· Technology- or actor-specific process orders
· Redundant processes, data flows, and files
If it is a logical system, it will make an assumption of perfect technology – meaning there would be no need to put in redundancy – i.e. capturing data incorrectly.
Analysts should avoid creating physical DFD’s during all analysis activities, except when generating alternatives.
Evaluating DFD Quality
High quality DFD’s are…
· readable
· internally consistent
· accurately represent system requirements
· have minimized complexity
Over complex models lead to information overload.
Information overload is when you have difficulty in understanding what occurs or when a reader receives too much information at one time. To avoid information overload we have the 7+-2 rule.
The rule of 7+-2 is the rule that limits the number of model components or connections among components to no more than nine.
Minimization of interfaces is directly related to the 7+-2 rule and is the principle of model design that seeks simplicity by limiting the number of connections among model components.
Ensuring Data Flow Consistency
Look for the following things in a DFD…
· Differences in data flow content between process and its process decomposition.
· Data outflows without corresponding data inflows.
· Data inflows without corresponding data outflows.
The following words denote the above items one should look out for…
· balancing – equivalence of data content between data flows entering and leaving a process and data flows entering and leaving a process decomposition DFD
· black hole – a process of data store with a data input that is never used to produce a data output
· miracle – a process or data store with a data element that is created out of nothing
How can black holes & miracles be detected…
· Sometimes they can be detected by simply examining the DFD’s for consistency.
· In some cases close examination of the data dictionary or process descriptions is also required.
· Ensuring data flow consistency is a straightforward but tedious process, fortunately most analysis tools automatically perform consistency checks.
Documentation of DFD Components
In the traditional approach, DFD’s show all three types of internal system components on one diagram…
1. Processes
2. Data Flows
3. Data Stores
Process Descriptions
Each process of a DFD must be defined formally. There are several options for process definition, they include…
· Process Decomposition (Explained in previous chapter)
· Structured English
· Decision Tables
· Decision Trees
Each type of process is suited to a particular type of DFD process, i.e. a Structured English process might be well suited to record customer information, while a decision tree process might be a bad choice to represent this process.
Structured English is a method of writing process specifications that combines structured programming techniques with narrative English. See the example below…
[image: 001]
Decision table is a tabular representation of processing logic containing decision variables, decision variable values, and actions or formulas. See the example below…
[image: 002]
Decision tree is a graphical description of process logic that uses lines organized like branches of a tree. See the example below…
[image: 003]

Functional requirements documentation for the traditional approach includes
1. an ERD with attributes
2. the set of DFD’s (context DFD, DFD Fragments, and any needed detailed DFD’s
3. process descriptions
4. data flow definitions, data store definitions & data element definitions

A data flow definition is a textual description of a data flow’s content and internal structure.
Data element definitions describe a data type, such as a string or integer. Each element should be described to indicate specifically what it represents.
Analysts need to maintain a central store of all these definitions as a project reference and to ensure consistency. A data dictionary is a repository for definitions of data flows, data stores, and data elements.
DFD Summary
A DFD will contain
· Data Flow Diagrams
· Process Definitions
· Data Definitions
· ERD Diagrams
Locations & Communication through Networks
Because structured systems analysis concentrates on logical modelling, physical issues such as processing locations and networks are sometimes ignored during analysis. However a great deal of information about process, data, and user distribution is needed during the early stages of design. Examples include…
· Number of locations of users
· Processing and data access requirements of users at specific locations
· Volume and timing of processing and data access requests
Gathering location information during analysis enables analysts to make better decisions during the last two analysis activities…
· Generate & Evaluate Alternatives
· Review Recommendations with Management
There are a few steps involved in gathering location information, they are outlined below…
1. Generate a location diagram
2. Generate an activity matrix based on the location diagram

Structured Systems Analysis & Design UNISA studies – Chap 9
Objectives of Chapter 9
· Discuss the issues related to managing and coordinating the activities of the SDLC (Systems Development Life Cycle)
· Explain the major components and levels of design
· Describe each major design activity
· Develop a simple network diagram
· Describe common deployment environments and matching application architectures
Key Words & Definitions for the Chapter
· architectural design – broad design of the overall system structure; also called general design or conceptual design
· detail design – low level design that includes the design of specific program details
· interface designers – specialists in user interface design; also called usability consultants or human factors engineers
· computer network – a set of transmission lines, equipment, and communication protocols to permit sharing of information and resources
· local area network – a computer network in which the distances are local, such as within the same building
· wide area network – a computer network spread across large distances, such as a city, state or nation
· router – network equipment that directs information within the network
· Internet – a global collection of networks that use the same networking protocol – TCP/IP
· World Wide Web - a collection of resources such as files and programs that can be accessed over the internet using standard protocols
· intranet – a private network that is accessible to a limited number of users, but which uses the same TCP/IP protocol as the internet
· extranet – an intranet that has been extended outside the organization to facilitate the flow of information
· virtual organization – a loosely coupled group of people and resources that work together as though they were an organization
· virtual private network – a network with security and controlled access for a private group but built on top of a public network such as the internet
· network diagram – a model that shows how application layers are distributed across locations and computer systems
· single-computer architecture – architecture that employs a single computer system executing all application-related software
· multitier architecture – architecture that distributes application-related software or processing load across multiple computer systems
· clustered architecture – a group of computers of the same type that share processing load and act as a single large computer system
· multicomputer architecture – a group of dissimilar computers that share processing load through specialization of function
· centralized architecture – architecture that locates all computing resources in a central location
· distributed architecture – architecture that deploys computing resources in multiple locations connected by a computer network
· server – a process, module, object, or computer that provides services over a network
· client – a process, module, object, or computer that requests services from one or more servers
· three-layer architecture – a client/server architecture that divides an application into the view layer, business layer, and data layer
· data layer – the part of three layer architecture tat interacts with the database
· business logic layer – the part of three-layer architecture that contains the programs that implement the business rules of the application
· view layer – the part of three-layer architecture that contains the user interface
· web services architecture – a client/server architecture that packages software into server processes that can be accessed via Web protocols
· middleware – computer software that implements communication protocols on the network and helps different systems communicate
Organizing project teams and assigning work
· One of the unique opportunities of a project manager is to help build a high-performance team
Team Organization
· Every project is different.
· Not possible to specify a particular team organization that works best in all situations.
· Several key questions that should be considered in organizing the team are identified in the following list
· Assign a team leader for each subteam or let the subteams organize themselves?
· Assign members permanently to a team or have floating team assignments?
· Assign team members to subteams to achieve a balance based on (1) skills, (2) experience, or (3) personality traits?
· Balance team membership based on permanent (core) members or transient members?
· Provide formal team training or on-the-job training for team members?
· Place team members in a large, common work area or individual cubicles or offices?
Assigning tasks to team members
· There are many different methods for partitioning the work among team members.
· The organization structure of the team also affects how tasks are assigned.
· Key questions that must be decided and implemented to move the project forward:
· What is the formality (versus informality) of the project (schedule, assignments, status, and so on)?
· Should tasks be assigned to subteams or to key individuals?
· Should tasks be assigned well in advance or using a just-in –time approach?
· Is the project schedule stable or is it changing schedule?
· Number and duration of critical-path tasks compare to number and duration of tasks that is not on critical path?
· Should tasks be assigned based on specific skills or on availability?
· Should tasks be assigned so that team members are fullt scheduled or should open times be provided on people’s schedules?
Managing the communication process
· Employees who are at the bottom of the communication hierarchy are very sensitive to a lack of communication.
· When people rise within the corporate hierarchy, they seem to forget the importance and need to keep people informed.
· Sometimes there are so many meetings that team members become frustrated because they cannot get their regular work done.
· A good project manager is sensitive to communication and establishes processes that ensure team members and outside stakeholders have the information they need, when they need it.
· The first step in communication management is to determine, at a detailed level, what kind of information required for project success.
· Two types of information on a project
· Project-related information – includes the project schedule, work and team assignments, status and progress reports, presentation materials, etc.
· System information – includes requirements definitions, specifications, design models, open issues logs, and finally program code.
· The second step concerns how to manage the information.
· For each information item, a mechanism should be put into place to
· Collect the information
· Store the information
· Distribute the information
· If the processes are established correctly, with good electronic tools, the project manager no longer becomes the information bottleneck and information is collected, stored and distributed almost automatically.
· Other electronic tools are available to help with team communication and information coordination.
· These tools and techniques, often referred to as computer support for collaborative work, not only record final design information but assist in team collaboration.
Monitoring the project plan
· Assign work to person or team
· complex task by itself
· during the life of a project the makeup of the project personnel often changes
· analysis activities require a lot of user involvement, and team members who can understand the user’s needs are most affective
· programmers and technical staff are often added to the team

· Collect status
· Less complex
· Providing status information should be a standard process for all team members
· Generally a waste of time to collect status in a “status meeting”
· Status information should be collected and posted electronically for all to see
· Analyse variance
· Primarily a judgment decision
· If a delayed task affects the overall schedule because it is a critical-path task, then it is significant variance
· Variance also raises the risk of a potential delay or defect.
· Take corrective action
· Complex
· Experienced project managers have a whole set of tools they can use to correct the variance.
· Reassigning team members to get more people working on the task, or some extra hours of overtime.
· In more serious instances, the entire schedule may have to be reworked or more team members may need to be recruited for the team.
Controlling issues and risks
· Every development project always has lots of questions that need answers and many decisions to be made
· During the project planning activities the project manager also identified potential risks may appear during the project.
· A good project manager will establish procedures to track the identified risks and document any newly identified risks
· The monitoring and control of open issues and risks for a project is usually nothing more complex than building various tracking logs.
Understanding the elements of design
· System design is the process of describing, organizing, and structuring the components of a system at both the architectural level and a detailed level, with a view toward constructing the proposed system.
· We design and specify various components of the solution
· To understand the various elements of system design, we must consider two questions;
· What are the components that require systems design?
· What are the inputs to and outputs of the design process?
Major components and levels of design
· To perform design, analyst first partition the entire system into its major components because an information system is too complex to design all at once
· A second important idea underlying systems design is that of the different levels of design
· During analysis, we first identified the scope of the problem before we tried to understand the details. We called this top-down analysis.
· Included both top-down and bottom-up activities
· For the entire system, the analysis first identify the overall application deployment environment
· Determine the overall architectural requirements and structure of the network before specifying the details of the routes, firewalls, servers, workstations and other components.
· For the application software, the first steps are to identify the various subsystems and their relationships to the network, the database, and the user-interface components.
· For the database components, the first steps are to identify the type of database to be used and the database management system.
· For the user interface, the first steps are to identify the general form and structure of the user dialog based on the major inputs and outputs.
· The project team also describes the relationship of the user-interface elements with the application software and the hardware equipment.
· Afterward, the detailed widow and report layouts can be developed.
Inputs for system design
· During analysis, documents and models are built.
· Also build models to represent the real world and to understand the desired business processes and the information used in those processes.
· Design is also a model-building activity
· Original definition of design indicates that it involves describing, organizing, and structuring the system solution
· The output of the design activities is a set of diagrams and documents that achieves this objective.
· For database design the traditional approach usually uses a relational database model.
· The object-oriented database model
· For user-interface design both techniques include the design of the human-computer dialog, forms, and reports.
· For application architecture design, traditional structured techniques and object-orientedd techniques do differ substantially.
· Structured techniques, including analysis and design models, are used to describe te structure and organization of system written using the input-process-output model of software
[image:]
Design activities
[image:]
[image:]
Design and Integrate the Network
· Network specialists establish network based on strategic plan
· Project team typically integrates system into existing network
· Technical requirements have to do with communication via networks
· Technical issues handled by network specialists
· Reliability, security, throughput, synchronization
Design the Application Architecture
· Specify how system use cases are carried out
· Described during system analysis as logical models of system activities
· After design alternative is selected, detailed computer processing is designed as physical models, such as physical data flow diagrams and structure charts (traditional) or interaction diagrams and class diagrams (OO)
· Approach varies depending on development and deployment environments
Design the User Interfaces
· User interface quality is critical aspect of system
· Design of user interface defines how user interacts with system
· GUI – windows, dialog boxes, mouse interaction
· Sound, video, voice commands
· To user of system, user interface is the system
· User interface specialists – interface designers, usability consultants, human factors engineers
Design the System Interfaces
· System interfaces enable systems to share and exchange information
· Internal organization systems
· Interfaces with systems outside organization
· New system interfaces with package application that organization has purchased and installed
· System interfaces can be complex
· Organization needs very specialized technical skills to work on these interfaces
Design and Integrate the Database
· System analysis data model used to create physical database model
· Collection of traditional computer files, relational databases, and/or object-oriented databases
· Technical requirements, such as response times, determine database performance needs
· Design work might involve
· Performance tuning
· Integration between new and existing databases
Prototype for Design Details
· Continue to create and evaluate prototypes during design phase
· Prototypes confirm design choices
· Database
· Network architecture
· Controls
· Programming environment
· Rapid application development (RAD) design prototypes evolve into finished system
Design and Integrate the System Controls
· Final design activity to ensure system has adequate safeguards (system controls) to protect organizational assets
· Controls are needed for all other design activities
· User interface – limit access to authorized users
· System interface – protect from other systems
· Application architecture – record transactions
· Database – protect from software/hardware failure
· Network design – protect communications
Network Design
· Network planning and design are critical issues that must be dealt with early in the design of any multitiered system.
· Key design issues are as follows
· integrating network needs of the new system with existing network infrastructure
· describing the processing activity and network connectivity at each system location
· describing the communication protocols and middleware that connect layers
· ensuring the sufficient network capacity is available
Computer Networks
· Set of transmission lines, specialized hardware, and communication protocols
· Enables communication among different users and computer systems
· Local area network (LAN) less than one kilometre long – connects computers within single building
· Wide area network (WAN) over one kilometre long – implies much greater, global, distances
· Router – directs information within network
[image:]
The Internet, Intranets, and Extranets
· Internet – global collection of networks that use TCP/IP networking protocols
· Intranets
· Private networks using same TCP/IP protocols as the Internet
· Limited to internal users
· Extranets
· Intranets that have been extended outside the organization
Network integration
· Network administrator assumes the responsibility of acquiring new capacity and making any network and the way other network-dependant application operate.
· The analyst’s role for the new system in these cases is to provide the network administrator with sufficient information and time to enable system development, testing and deployment
Network Description
· Location-related information gathered during analysis may have been documented using location diagrams, activity-location matrices and activity-data matrices
· Suring network design, the analyst expands the information content of those documents to include processing, communication protocols, middleware and communication capacity

Communication protocols
· The network diagram is also a starting point for specifying protocol requirements
· If the WAN fails, messages are quoted through VPN connections over internet
· All clients must be able to send HTTP requests and receive active content such as HTML forms and embedded scripts
Network capacity
· Information from activity-location and activity-data matrices is the starting point for estimating communication capacity requirements for various LAN, WAN, and internet connections
Application Architecture
· Complex hardware/networks require more complex software architectures
· There are commonly used approaches (patterns) for application architecture
· Client/server architecture
· Three-layer client/server architecture
· Web services architecture
· Internet and Web-based application architecture
Client/Server Architecture
· Client/server divides programs into two types
· Server – manages information system resources or provides well-defined services for client
· Client – communicates with server to request resources or services
· Advantage – deployment flexibility
· Location, scalability, maintainability
· Disadvantage – complexity
· Performance, security, and reliability

Interaction Among Multiple Clients and a Single Server
[image:]

Client/Server Architectural Process
· Decompose application into client and server programs, modules, or objects
· Identify resources or services that can be centrally managed by independent software units
· Determine which clients and servers will execute on which computer systems
· Describe communication protocols and networks that connect clients and servers

Three-Layer Client/Server Architecture
· Layers can reside on one processor or be distributed to multiple processors
· Data layer – manages access to stored data in databases
· Business logic layer – implements rules and procedures of business processing
· View layer – accepts user input and formats and displays processing results
[image:]
Web Services Architecture
· A client/server architecture
· Packages software functionality into server processes (“services”)
· Makes services available to applications via Web protocols
· Web services are available to internal and external applications
· Developers can assemble an application using existing Web services
[image:]
Middleware
· Aspect of distributed computing
· Connects parts of an application and enables requests and data to pass between them
· Transaction process monitors, object request brokers (ORBs), Web services directories
· Designers reply on standard frameworks and protocols incorporated into middleware
Internet and Web-Based Application Architecture
· Web is complex example of client/server architecture
· Can use Web protocols and browsers as application interfaces
· Benefits
· Accessibility
· Low-cost communication
· Widely implemented standards

Summary
· Systems design is process of organizing and structuring components of system to allow construction (programming) of new system
· Design phase of project consists of activities that relate to design of components of new system
· Application architecture, user interfaces, system interfaces, databases, network diagrams, system controls
· Prototyping may be required to specify any part or all of the design
· Inputs to design activities are diagrams built during analysis
· Outputs of design are also diagrams that describe architecture of new system and detailed logic of programming components
· Inputs, design activities, and outputs are different depending on whether a structured approach or an object-oriented approach is used
· Architectural design adapts to development environment and decomposes design into layers

Structured Systems Analysis & Design UNISA studies – Chap 10
Objectives of Chapter 10
· Describe the steps involved in the traditional
· approach to designing the application architecture
· Develop a system flowchart
· Develop a structure chart using transaction analysis and transform analysis
· Write pseudocode for structured modules
· Explain how to use three-layer design with the traditional approach
Key Words & Definitions for the Chapter
· Module – an identifiable component of a computer program that performs a defined function
· Computer program – an executable entity made up of a set of modules
· System flowchart – a diagram that describes the overall flow of control between computer programs in a system
· Pseudocode – statements similar to that of a programming language that describe the logic of a module
· Structure chart – a hierarchical diagram showing the relationships between the modules of a computer program
· Program call – the transfer of control from a module to a subordinate module to perform a requested service
· Data couples – the individual data items that are passed between modules in a program call
· Transaction analysis – the development of a structure chart based on a DFD that describes the processing for several types of transactions.	
· Transform analysis – the development of a structure chart based on a DFD that describes the input-process-output data flow
· Afferent data flow – the incoming data flow from a sequential set of DFD processes
· Efferent data flow – the outgoing data flow in a sequential set of DFD
· Central transform – set of DFD processes that are located between the input and output processes
· Module coupling – the manner in which modules relate to each other; the preferred method is data coupling.
· Module cohesion – a measure of the internal strength of a module
Overview
· Traditional approach to designing software
· Overview of structured models, model development process, related terminology
· How data flow diagrams are annotated with automation boundary information
· How analysis phase models are transformed into design models using system flowcharts, structure charts, and module pseudocode
· Integration into other design phase activities
· Applying approach to a three-layer architecture

The Structured Approach to Designing the Application Architecture
· Application software programs
· Designed in conjunction with database and user interface
· Hierarchy of modules
· Design internal logic of individual modules
· Top-down approach
· DFDs with automation boundaries
· System flowcharts, structure charts, pseudocode
[image:]
The Automation System Boundary
· Partitions data flow diagram processes into manual processes and automated systems
· Processes can be inside or outside boundary
· Data flows can be inside and outside of boundary
· Data flows that cross system boundary represent inputs and outputs of system
· Data flows that cross boundaries between programs represent program-to-program communication
[image:]
The System Flowchart
· Representation of various computer programs, files, databases, and associated manual processes that make up complete system
· Frequently constructed during analysis activities
· Graphically describes organization of subsystems into automated and manual components
· Can show type of transaction processing system
· Batch
· Real-time
[image:]
[image:]
[image:]
The Structure Chart
· Describes functions and subfunctions of each part of system
· Shows relationships between modules of a computer program
· Simple and direct organization
· Each module performs a specific function
· Each layer in a program performs specific activities
· Chart is tree-like with root module and branches
[image:]
[image:]

[image:]

Developing a Structure Chart
· Transaction analysis
· Uses system flow chart and event table inputs
· Upper-level modules developed first
· Identifies each transaction supported by program
· Transform analysis
· Uses DFD fragments for inputs
· Computer program “transforms” inputs into outputs
· Charts have input, calculate, and output subtrees
[image:]
[image:]
Steps to Create a Structure Chart from a DFD Fragment
· Determine primary information flow
· Main stream of data transformed from some input form to output form
· Find process that represents most fundamental change from input to output
· Redraw DFD with inputs to left and outputs to right – central transform process goes in middle
· Generate first draft of structure chart based on redrawn data flow
[image:]
[image:]
[image:]
[image:]
Steps to Create a Structure Chart from a DFD Fragment (continued)
· Add other modules
· Get input data via user-interface screens
· Read from and write to data storage
· Write output data or reports
· Add logic from structured English or decision tables
· Make final refinements to structure chart based on quality control concepts
[image:]
[image:]
Evaluating the Quality of a Structure Chart
· Module coupling
· Measure of how module is connected to other modules in program
· Goal is to be loosely coupled
· Module cohesion
· Measure of internal strength of module
· Module performs one defined task
· Goal is to be highly cohesive
[image:]
Module Algorithm Design—Pseudocode
· Describes internal logic of software modules
· Variation of structured English that is closer to programming code
· Syntax should mirror development language
· Three types of control statements used in structured programming
· Sequence – sequence of executable statements
· Decision – if-then-else logic
· Iteration – do-until or do-while
Integrating Structured Application Design with Other Design Tasks
· Structure chart must be modified or enhanced to integrate design of user interface and database
· Are additional modules needed?
· Does pseudocode in modules need modification?
· Are additional data couples needed to pass data?
· Structure charts and system flowcharts must correspond to planned network architecture
· Required protocols, capacity, and security.
Three-Layer Design
· Three-layer architecture
· View layer, business logic layer, and data layer
· Structure charts and system flowcharts describe design decisions and software structuring
· Employs multiple programs for user interface, business logic, and data access modules
· Modules in different layers communicate over real-time links using well-defined protocols
[image:]
[image:]
Summary
· For traditional structured approach to systems design, primary input is data flow diagram
· DFD is enhanced by adding system boundary
· Designer describes processes within each DFD boundary using one or more structure charts
· Structure charts developed using
· Transaction analysis – multiple transaction types
· Transform analysis – single transaction from input to output
· Structure charts may be based on three-layer architecture
· Modules will be clearly identified by layer
· Structure chart may be decomposed if layers execute on multiple systems
· Structured design may also include
· System flowcharts to show data movement
· Module pseudocode to describe internal logic of structure chart module
image2.png
Step-by-step instructions are
followed that transform nputs.

Into outputs (a computer or
person or both doing the work).

Data flowing from place to
place, such as an input or
output 1o a process.

‘The source or destination of
data outsid the system.

Data at rost, boing stored for
later use. Usually corresponds

1022 data ontity on an onity-
relationship diagram.

Communication back and forth
between an external agent and

Roaltimo vk a process as the process is
executing (6. credit card
verifcation).

image3.jpeg
Gustomer

Catalog

Look
upitom

Product tem

tom
availabilty
otalls

Inventory tem

image4.jpeg
External agent, data flows, and the
process come from information about
‘the event in the event table

Data stores come from
the entity-relationship
diagram

Trigger Use case

Catalog

Customer - Product tem
up ilem
e
Tom | availabitty
avaiabilty Inventory tem
Getails
—

Destination Response

image5.jpeg
Process 2.1 - Record Customer Tnformation

sk if customer has an account (or has made a previous order)
If customer has an account then
Ask for ldentification information
Quezy database vith ldentifying information
Copy query response data to Order details
Else
Create an emoty Customer record in the database
Ask custoner for Customer attributes
Update empty Customer record with Customer ateributes
Endif
Ask customer for order information for first item
While nore order items bo
Update Order details with order information
Enduhile

Record
customor

Customer

Customer

information

Order
deails

image6.jpeg
YTD purchases > $250
Number of Hems (N) Na4

Delvery Day Nex 2nd

Shipping Charge ($) N150 N'B00 N'250 Fres

image7.jpeg
YTD purchases. Delivery charge

>$250 ®
2
10

image8.png
Traditionat
Approach

Object-Oriented
‘Approach

image9.png
Project
planning
phase

Design the user interfaces
Design the system interfaces
Design and integrate the database
Prototype for design details

Design and integrate the network Implementation
Design the application architecture phase Support
phase

image1.png
Research & Understand the problem

AV

Verify that the benefits of solving the problem
outweigh the costs.

V2

Define requirements for solving the problem

i

Develop a set of possible solutions (alternatives)

v

Decide which solution is best, and make a
recommendation

AV

Define the details of the chosen solution

A2

Implement the solution

O,

AV

Monitor to make sure that you obtain the desired
results

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

